Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-231
Main Title: Algorithmische Methoden der konformen Abbildungen auf fraktale Gebiete
Author(s): Kraetzer, Philipp
Advisor(s): Pommerenke, Christian
Granting Institution: Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Type: Doctoral Thesis
Language: German
Language Code: de
Abstract: This doctoral thesis consists of two parts. The main subject of the first three chapters is the integral means spectrum of a conformal function f mapping the unit disc onto any bounded domain of the complex plain. The integral means spectrum of f is defined by          betaf(p) = limsup log (int |f'(z)|p |dz|) / -log(1-r) with a limes for r going to 1 and the integral for |z|=r. It measures the average growth of the derivative of f aproaching the boundary. The course of the universal integral means spectrum B(p) defined as the supremum of betaf over all bounded univalent functions is not entirely known. The author conjectured in [Complex Variables 31 (1996)] that B(p) = p2/4 for |p| < 2. The first three chapters introduce conformal maps constructed by using complex dynamics, the theory of lacunary series as well as geometric fractals as given by the snowflake. These functions are considered to have fast growing integral means. Numerical results are presented. The objective is to obtain lower bounds for the conjectured course of the universal integral means spectrum. Best results are achieved with functions having an image domain bounded by the Julia set of a quadratic polynomial. The fourth chapter deals with an other issue. We consider the trajectories of quadratic differentials and first give some well known results of their local behaviour. After that we develop an algorithm to compute precisely the trajectories for rational quadratic differentials. The regularisation of a quadratic differential near poles and zeroes of the function plays a key role in the algorithm. We consider some special cases related to function theoretic applications concerning extremal domains and present the graphic results of computer calculations.
URI: urn:nbn:de:kobv:83-opus-1332
http://depositonce.tu-berlin.de/handle/11303/528
http://dx.doi.org/10.14279/depositonce-231
Exam Date: 28-Jan-2000
Issue Date: 13-Mar-2000
Date Available: 13-Mar-2000
DDC Class: 510 Mathematik
Subject(s): Mathematics
Usage rights: Terms of German Copyright Law
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Publications

Files in This Item:
File Description SizeFormat 
Dokument_38.pdf661.47 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.