Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-5051
Main Title: Probabilistic multi-class segmentation for the Amazon picking challenge
Author(s): Jonschkowski, Rico
Eppner, Clemens
Höfer, Sebastian
Martín-Martín, Roberto
Brock, Oliver
Type: Research Paper
Language Code: en
Abstract: We present a method for multi-class segmentation from RGB-D data in a realistic warehouse picking setting. The method computes pixel-wise probabilities and combines them to find a coherent object segmentation. It reliably segments objects in cluttered scenarios, even when objects are translucent, reflective, highly deformable, have fuzzy surfaces, or consist of loosely coupled components. The robust performance results from the exploitation of problem structure inherent to the warehouse setting. The proposed method proved its capabilities as part of our winning entry to the 2015 Amazon Picking Challenge. We present a detailed experimental analysis of the contribution of different information sources, compare our method to standard segmentation techniques, and assess possible extensions that further enhance the algorithm’s capabilities. We release our software and data sets as open source.
URI: http://depositonce.tu-berlin.de/handle/11303/5376
http://dx.doi.org/10.14279/depositonce-5051
Issue Date: Feb-2016
Date Available: 17-Mar-2016
DDC Class: DDC::600 Technik, Medizin, angewandte Wissenschaften::600 Technik
Subject(s): robotics
perception
multi-class segmentation
performance
grasping
Robotik
Greifen
Segmentierung
Wahrnehmung
Leistungsfähigkeit
Creative Commons License: https://creativecommons.org/licenses/by/4.0/
Series: Technical Report of the Robotics and Biology Laboratory, Department of Computer Engineering and Microelectronics, Technische Universität Berlin
Series Number: RBO-2016-01
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 4 Elektrotechnik und Informatik » Institut für Technische Informatik und Mikroelektronik » Publications

Files in This Item:
File Description SizeFormat 
jonschkowski_etal.pdf3.9 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.