Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-5098
Main Title: Extending the knowledge base of foresight
Subtitle: the contribution of text mining
Translated Title: Erweiterung der Wissensbasis von Foresight
Translated Subtitle: der Beitrag von Text Mining
Author(s): Kayser, Victoria
Advisor(s): Blind, Knut
Referee(s): Dreher, Carsten
Blind, Knut
Granting Institution: Technische Universität Berlin
Type: Doctoral Thesis
Language Code: en
Abstract: The future is shaped and influenced by decisions made today. These decisions need to be made on a solid ground and diverse information sources should be considered in the decision process. For exploring different futures, foresight offers a wide range of methods for gaining insights. The starting point of this thesis is the observation that recent foresight methods particularly use patent and publication data or rely on expert opinion, but few other data sources are used. In times of big data, many other options exist and, for example, social media or websites are currently not a major part of these deliberations. While the volume of data from heterogeneous sources grows considerably, foresight and its methods rarely benefit from such available data. One attempt to access and systematically examine this data is text mining that processes textual data in a largely automated manner. Therefore, this thesis addresses the contribution of text mining and further textual data sources for foresight and its methods. After clarifying the potential of combining text mining and foresight, four concrete examples are outlined. As the results show, the existing foresight methods are improved as exemplified by roadmapping and scenario development. By exploiting new data sources (e.g., Twitter and web mining), new options evolve for analyzing data. Thus, more actors and views are integrated, and more emphasis is laid on analyzing social changes. Summarized, using text mining enhances the detection and examination of emerging topics and technologies by extending the knowledge base of foresight. Hence, new foresight applications can be designed. And, in particular, text mining is promising for explorative approaches that require a solid base for reflecting on possible futures.
Die Zukunft wird von heutigen Entscheidungen geformt und beeinflusst. Diese Entscheidungen sollten auf einer soliden Basis getroffen werden sowie diverse Informationsquellen im Entscheidungsprozess in Betracht gezogen werden. Um verschiedene Zukünfte zu erkunden, bietet Foresight eine große Spannbreite an Methoden um neue Erkenntnisse zu gewinnen. Der Ausgangspunkt für diese Dissertation ist die Beobachtung, dass derzeitige Foresight-Methoden vor allem Patent- und Publikationsdaten nutzen oder sich auf Experteneinschätzungen stützen, aber wenig andere Datenquellen verwendet werden. Im Zeitalter von Big Data existieren viele andere Optionen und viele Textquellen, wie zum Beispiel soziale Medien oder Webseiten, sind derzeit kein Kernbestandteil dieser Überlegungen. Während das Datenvolumen aus heterogenen Quellen erheblich steigt, machen sich Foresight und seine Methoden das nicht zu nutzen. Ein Ansatz diese Daten systematisch zu erschließen und zu erforschen ist Text Mining, womit Textdaten weitestgehend automatisch verarbeitet werden. Deshalb adressiert diese Dissertation den Beitrag von Text Mining und weiterer Datenquellen zu Foresight und seinen Methoden. Nach einer grundsätzlichen Klärung des Potentials einer Kombination von Text Mining und Foresight, werden vier konkrete Beispiele vorgestellt. Wie die Ergebnisse zeigen, werden die bestehenden Foresight-Methoden verbessert wie für Roadmapping und Szenarioentwicklung veranschaulicht wird. Durch die Nutzung neuer Datenquellen (z. B.: Twitter und Web Mining) entstehen neue Möglichkeiten in der Datenanalyse. Dadurch können mehr Akteure und Sichtweisen integriert und die Analyse gesellschaftlicher Veränderungen stärker betont werden. Zusammengefasst verbessert Text Mining die Erkennung und Untersuchung von aufkommenden Themen und Technologien, indem die Wissensbasis von Foresight erweitert wird. Neue Foresight-Anwendungen können daraus entwickelt werden. Und besonders vielversprechend ist Text Mining für explorative Ansätze, die eine solide Basis erfordern, um Überlegungen über mögliche Zukünfte anzustellen.
URI: http://depositonce.tu-berlin.de/handle/11303/5423
http://dx.doi.org/10.14279/depositonce-5098
Exam Date: 24-Feb-2016
Issue Date: 2016
Date Available: 14-Apr-2016
DDC Class: DDC::300 Sozialwissenschaften::330 Wirtschaft
Subject(s): foresight
text mining
roadmapping
scenario development
social media
strategic planning
data analysis
Szenarioentwicklung
Innovation
Strategieplanung
Usage rights: Terms of German Copyright Law
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 7 Wirtschaft und Management » Institut für Technologie und Management (ITM) » Publications

Files in This Item:
File Description SizeFormat 
kayser_victoria.pdf4,85 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.