Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-5248
Main Title: Biosynthetic rivalry of o-aminophenol-carboxylic acids initiates production of hemi-actinomycins in Streptomyces antibioticus
Author(s): Crnovčić, Ivana
Semsary, Siamak
Vater, Joachim
Keller, Ullrich
Type: Article
Language Code: en
Abstract: Actinomycins consist of two pentapeptide lactone rings attached to 2-amino-4,6-dimethyl-3-oxo-phenoxazine-1,9-dicarboxylic acid (actinocin). The actinocin moiety is formed through oxidative condensation of two 3-hydroxy-4-methylanthranilic acid (4-MHA) pentapeptide lactones (actinomycin halves) as the last step of actinomycin biosynthesis. We found that feeding of 4-MHA or its putative biogenetic precursor 3-hydroxyanthranilic acid (3-HA) to Streptomyces antibioticus induced formation of different new compounds at the expense of actinomycins. These contain only one pentapeptide lactone ring attached to the β-side of their phenoxazinone ring systems and are formed through premature condensation of the externally added abundant 4-MHA or 3-HA with actinomycin halves. They were termed hemi-actinomycins and C-demethyl-hemi-actinomycins, respectively, which differ from each other in the presence or absence of one or both methyl groups in their phenoxazinone moieties. 3-HA also induces synthesis of various C-demethylactinomycins formed through condensation of actinomycin halves in which 3-HA had been incorporated by the 4-MHA incorporating enzyme in lieu of 4-MHA. 3-HA was not converted to 4-MHA as revealed by its inability to stimulate synthesis of actinomycin or hemi-actinomycin synthesis and thus remained a substrate analogue of 4-MHA rather than its precursor. In contrast to S. antibioticus, actinomycin-producing streptomycetes such as Streptomyces chrysomallus or Streptomyces parvulus do not form hemi-structured actinomycins when fed with 3-HA or 4-MHA. They do not possess the enzyme phenoxazinone synthase (PHS) which in S. antibioticus is present and most probably catalyses premature condensation of abundant 4-MHA or 3-HA with actinomycin halves. Testing hemi-acinomycin IV for drug activity revealed that it intercalates into DNA and inhibits relaxation and supertwisting of DNA by topoisomerase I and DNA-gyrase like actinomycin IV (D). Moreover, it has inhibitory activity on growth of Bacillus subtilis.
URI: http://depositonce.tu-berlin.de/handle/11303/5619
http://dx.doi.org/10.14279/depositonce-5248
Issue Date: 2014
Date Available: 23-Jun-2016
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Sponsor/Funder: DFG, EXC 314, Unifying Concepts in Catalysis
Usage rights: Terms of German Copyright Law
Journal Title: RSC Advances : an international journal to further the chemical sciences
Publisher: Royal Society of Chemistry
Publisher Place: Cambridge
Volume: 4
Issue: 10
Publisher DOI: 10.1039/c3ra45661g
Page Start: 5065
Page End: 5074
EISSN: 2046-2069
Notes: Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Institut für Chemie » Publications

Files in This Item:
File Description SizeFormat 
c3ra45661g.pdf1,01 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.