Please use this identifier to cite or link to this item:
Main Title: The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density
Author(s): Füllbrandt, Marieke
Klitzing, Regine von
Schönhals, Andreas
Type: Article
Language Code: en
Abstract: Temperature sensitive poly(N-isopropylacrylamide) (pNIPAM) microgels are prepared and investigated using dielectric spectroscopy in a frequency range from 10−1 Hz to 106 Hz at temperatures from 15 °C to 50 °C. The microgels were synthesized with different crosslinker molar ratios resulting in microgels with structural differences. From the dielectric response of the pNIPAM microgels the swelling/deswelling behaviour is monitored by both the temperature (T) and the frequency (f) dependence of the conductivity spectra σ*(f, T). The volume phase transition (VPT) at the lower critical solution temperature (LCST) is deduced by a change in the T-dependence of the DC conductivity σ′DC. It can be explained by a decrease in the effective charge mobility and a reduction in the effective charge number contributing to σ′DC at T > LCST. Addressing the f-dependence of the real part of the conductivity σ′, a pronounced frequency dependence at temperatures above the LCST can be observed whereas at temperatures below the LCST the conductivity spectra resemble that of the pure solvent (water) which is frequency independent. The f-dependence of σ′ at T > LCST is assigned to the collapse of the microgel particles. At the interfaces of the collapsed particles charge carriers are blocked and/or entrapped giving rise to Maxwell–Wagner–Sillars (MWS) polarization effects. The dependence of the MWS effect on the crosslinker amount is studied in detail and conclusions concerning the internal structure of the microgels with respect to their crosslinking density are drawn. Moreover the dielectric data are related to dynamic light scattering data. A correlation between the MWS polarization effect and the swelling/deswelling ratio expressed by the hydrodynamic radius Rh at different temperatures is established for the first time.
Issue Date: 2013
Date Available: 27-Jun-2016
DDC Class: 530 Physik
Journal Title: Soft matter
Publisher: Royal Society of Chemistry
Publisher Place: Cambridge
Volume: 9
Issue: 17
Publisher DOI: 10.1039/c3sm27762c
Page Start: 4464
Page End: 4471
EISSN: 1744-6848
ISSN: 1744-683X
Notes: Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
Appears in Collections:Inst. Chemie » Publications

Files in This Item:
File Description SizeFormat 
c3sm27762c.pdf488.04 kBAdobe PDFThumbnail

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.