Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-5481
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWiedemann, Dennis-
dc.contributor.authorIslam, Mazharul M.-
dc.contributor.authorNakhal, Suliman-
dc.contributor.authorSenyshyn, Anatoliy-
dc.contributor.authorBredow, Thomas-
dc.contributor.authorLerch, Martin-
dc.date.accessioned2016-09-13T12:02:43Z-
dc.date.available2016-09-13T12:02:43Z-
dc.date.issued2015-
dc.identifier.issn1932-7447-
dc.identifier.urihttp://depositonce.tu-berlin.de/handle/11303/5888-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-5481-
dc.description.abstractLayered lithium transition-metal sulfides have long been discussed as early electrode materials for lithium-ion batteries. However, fundamental knowledge of lithium-ion migration in these solids is still lacking. In this study, we report on the diffusion dynamics in lithium-deficient high-temperature polymorphs of lithium titanium sulfides (3R-LixTiS2; x = 0.7, 0.9) as analyzed using powder neutron diffractometry and density functional theory (DFT) climbing-image nudged-elastic-band (cNEB) calculations. Two classes of probable migration pathways have been identified from the scattering-length density distributions (filtered using the maximum-entropy method [MEM]) and the probability density functions (PDFs, modeled from anharmonic Debye-Waller factors): direct diffusion in the (001) plane as the major mechanism and indirect diffusion through adjacent tetrahedral voids as a minor mechanism. Calculated activation barriers agree well with one-particle potentials (OPPs) derived from measurements for Li0.7TiS2 (0.484[14] and 0.88[4] eV) but deviate for Li0.9TiS2. The discrepancy at low defect concentration is attributed to the failure of the OPP derivation and the different nature of the methods (space-time averaged vs individual-ion perspective). This work elucidates the pathways of lithium-ion diffusion in 3R-LixTiS2 and points out pitfalls in established experimental/computational methods.en
dc.description.sponsorshipDFG, FOR 1277, Mobilität von Lithiumionen in Festkörpern (molife)en
dc.language.isoen-
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.html-
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.titleLithium diffusion pathways in 3R-LixTiS2: a combined neutron diffraction and computational studyen
dc.typeArticleen
tub.accessrights.dnbfree-
tub.publisher.universityorinstitutionTechnische Universität Berlin-
dc.identifier.eissn1932-7455-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1021/acs.jpcc.5b01166-
dcterms.bibliographicCitation.journaltitleJournal of Physical Chemistry Cen
dcterms.bibliographicCitation.originalpublisherplaceWashington, D.C.en
dcterms.bibliographicCitation.volume119-
dcterms.bibliographicCitation.pageend11381-
dcterms.bibliographicCitation.pagestart11370-
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Societyen
dcterms.bibliographicCitation.issue21-
Appears in Collections:FG Anorganische Chemie - Festkörper- und Materialchemie » Publications

Files in This Item:
File Description SizeFormat 
Wiedemann-et-al_2015.pdf757.36 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.