Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-5492
Main Title: Modelling, kinematics, dynamics and control design for under-actuated manipulators
Translated Title: Bahnplanung und Steuerungsentwicklung für unteraktuierte Manipulatoren durch eine Modellierung der Kinematik und Dynamik
Author(s): Albalasie, Ahmad
Advisor(s): Seliger, Günther
Referee(s): Seliger, Günther
Abu Hanieh, Ahmed
Krüger, Jörg
Granting Institution: Technische Universität Berlin
Type: Doctoral Thesis
Language Code: en
Abstract: Robotic handling operations cover a diversity of applications. Pick and place, palletizing or depalletizing, loading on machines or unloading from machines, storage/retrieval, and feeding the production lines are some examples. A manifold of different applications inspires the development of industrial robot types. The advantages of industrial robots can be summarized in different aspects: worker’s protection in dangerous working conditions, higher working quality, higher productivity rate, and cost saving. Due to concerns about resource efficiency, energy consumption has become an issue for robotic development. The System Applying Momentum Transfer for Acceleration of an End Effector with the Redundant Axis (SAMARA) is a robotic prototype of an industrial robot for pick and place applications. This prototype uses redundant, under-actuated configurations and an evolutionary algorithm (EA) to minimize energy consumption. Enabling for applications with relatively large displacement tasks, higher than one meter and high payload of up to 5.5 kilograms, the effectiveness of handling can be increased. Energy saving in specified cycle time has been achieved for this robotic kinematics. Reducing the cycle time and energy consumption are conflicting goals. However, actually, the computation time for the trajectory planning is too long. PID (proportional–integral–derivative) control is not adequate for a robust under-actuated motion (UAM). The uncertainty of payload causes unacceptable effects on accuracy, repeatability, and precision of the under-actuated robot. Using the Quasi-Linearization (QL) is an approach for trajectory planning with minimizing energy consumption and reducing computation time. The QL is focused on reducing the cycle time to increase the productivity of the handling operations to achieve an optimal performance for the robot to meet the industrial requirements. The suggested control scheme uses the adaptive model predictive control (AMPC). The AMPC is classified as an advance optimal control technique; it has the ability to minimize the input torque, and the error between the actually achieved response and the desired response of the manipulator. The model has the inherent ability to deal naturally with constraints on the inputs and has the capability of updating the linearized dynamic model at each current operating point, which solves the problem of nonlinearity in dynamic equations of the robot. Evaluations for the control scheme and for the trajectory planning are tested for SAMARA prototype. The concepts have been verified using several criteria, e.g., by comparing the results between the simulation power consumption and the actual power consumption measured from the physical prototype, comparing the performance of the QL approach with EA as trajectory planning algorithm for the under-actuated motion, and comparing the performance of SAMARA with other industrial robots from several perspectives. The applicability of under-actuated robotic kinematics for practical applications has been approved by examples from food industry, and press lines industry, with their respective requirements.
Roboterbasierte Handhabungsoperationen sind in unterschiedlichen Anwendungsbereichen relevant. Beispiele sind Pick-und-Place Operationen, Palettierungen, Be- und Entladen von Maschinen sowie die Bereitstellung von Fertigungslinien mit Werkstücken. Die Entwicklung von Industrierobotern wird von einer Vielfalt unterschiedlicher Anwendungsbereiche inspiriert. Vorteile von Industrierobotern sind hohe Arbeitsgenauigkeit, hohe Produktivität, Kostenreduktion und der mögliche Einsatz in gefährlichen Produktionsumgebungen. Vorbehalte gegenüber Industrierobotern ergeben sich aus ihrer oft geringen Ressourceneffizienz, weswegen der Energieverbrauch in den Fokus aktueller Entwicklungsarbeiten tritt. Das „System Applying Momentum Transfer for Acceleration of an End Effector with the Redundant Axis“ (SAMARA) ist der Prototyp eines Industrieroboters für Pick-und-Place Operationen. Unter Verwendung redundanter, unteraktuierter Konfigurationen und Evolutionärer Algorithmen (EA) kann der Energieverbrauch reduziert werden. Für Anwendungen mit verhältnismäßig größeren Handhabungsweglängen und hohen Traglasten von bis zu 5,5kg kann die Effektivität der Handhabungsoperation verbessert werden. Für diese Roboterkinematik konnten bereits Energieeinsparungen erreicht werden. Es hat sich gezeigt, dass die Verringerung der Zykluszeit bei gleichzeitiger Reduktion des Energieverbrauches ein Zielkonflikt darstellt. Gleichermaßen ist die Berechnungszeit zur Planung der Trajektorie der Endeffektoren zu hoch. PID Control eignet sich nicht für robuste unteraktuierte Bewegungen (UAM). Unsicherheiten über die Höhe der Traglast beeinflussen die Ablagegenauigkeit sowie die Wiederholgenauigkeit bei der Handhabung. Der Ansatz einer Quasi-Linearization (QL) dient der Planung von Trajektorien bei gleichzeitiger Reduktion von Energieverbrauch und Rechenzeit. QL ist auf die Reduktion der Zykluszeit und damit auf die Erhöhung der Produktivität von Handhabungsoperationen durch die Entwicklung eines verbesserten Controllers gerichtet, um die aktuellen industriellen Anforderungen zu erfüllen. Die Control-Strategie verwendet ein sog. Adaptive Model Predictive Control (AMPC). Das AMPC ist eine verbesserte Control-Strategie mit der Eigenschaft, das Eingansdrehmoment und den Fehler zwischen Soll- und Istposition des Manipulators zu minimieren. Das Modell hat darüber hinaus die Fähigkeiten mit Randbedingungen der Eingänge umzugehen und das linearisierte dynamische Modell zu aktualisieren, wodurch das Problem der Nichtlinearität der dynamischen Gleichungen des Roboters umgangen werden kann. Eine Bewertung des Control-Vorganges und der Trajektorieplanung wurde für SAMARA durchgeführt. Die Konzepte wurden unter Berücksichtigung mehrerer Kriterien verifiziert. Hierzu zählen der Vergleich der Ergebnisse von simuliertem Energieverbrauch mit dem tatsächlichen im Betrieb gemessenen, der Leistung des QL-Ansatzes mit EA als Algoritmus zur Planung von Trajektorien und der Leistung von SAMARA mit anderen Industrierobotern. Sowohl in der Lebensmittel- als auch in der Druckindustrie konnten unteraktuierte Roboter ihre Anwendbarkeit unter Beweis stellen.
URI: http://depositonce.tu-berlin.de/handle/11303/5899
http://dx.doi.org/10.14279/depositonce-5492
Exam Date: 16-Aug-2016
Issue Date: 2016
Date Available: 15-Sep-2016
DDC Class: DDC::600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften::629 Andere Fachrichtungen der Ingenieurwissenschaften
Subject(s): under-actuated robot
adaptive model predictive control
trajectory planning algorithm
quasi-linearization
null space motion
pick and place robot
Creative Commons License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 5 Verkehrs- und Maschinensysteme » Institut für Werkzeugmaschinen und Fabrikbetrieb » Publications

Files in This Item:
File Description SizeFormat 
albalasie_ahmad.pdf7.54 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.