Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-6015
Main Title: Exploiting structure in non-convex quadratic optimization and gas network planning under uncertainty
Translated Title: Ausnutzung von Struktur in nichtkonvexer quadratischer Optimierung und Gasnetzplanung unter Unsicherheit
Author(s): Schweiger, Jonas
Advisor(s): Koch, Thorsten
Referee(s): Lodi, Andrea
Koch, Thorsten
Granting Institution: Technische Universität Berlin
Type: Doctoral Thesis
Language Code: en
Abstract: Der bemerkenswerte Erfolg der angewandten mathematischen Optimierung in den letzten Dekaden ist mehr auf Einsichten in mathematische Strukturen zurückzuführen, als auf eine Steigerung der Rechenleistung. In diesem Sinne adressieren wir Anwendungen, in denen Nichtkonvexität und Unsicherheit in den Daten die Hauptschwierigkeiten darstellen. Der erste Teil dieser Arbeit beschäftigt sich mit nichtkonvexen quadratischen Optimierungsproblemen. Relaxierungen sind integraler Bestandteil von Branch&Bound-Lösungsmethoden für diese Problemkategorie. Wir leisten folgende Beiträge: Erstens beschreiben wir eine neue Art fehlende Linearisierungsvariablen, in der so genannten Reformulation-Linearization-Technique (RLT), zu behandeln. Diese wird inzwischen in der kommerziellen Software CPLEX verwendet. Zweitens beschäftigen wir uns mit der Optimierung einer quadratischen Zielfunktion über die Standardsimplex oder einen so genannten Knapsack-Constraint. Solche grundlegenden Strukturen sind Teil vieler komplexer Modelle. Wir benutzen bekannte Verbindungen zum maximalen Cliquenproblem sowie zu RLT, um neue gültige Ungleichungen herzuleiten, die die Relaxierung verstärken. Drittens beschäftigen wir uns mit dem Pooling Problem, das z.B. in der Erdölindustrie relevant ist. Wie leiten eine neue Relaxierung her, die die wesentliche nichtkonvexe Struktur des Problems erfasst, aber klein genug für eine grundlegende Untersuchung ist. Wir geben eine innere Beschreibung in Form der Extrempunkte, sowie eine äußere Beschreibung in Form von Ungleichungen, die die konvexe Hülle (welche im Allgemeinen kein Polyeder ist) beschreiben, an. Wir zeigen, dass neuen die Ungleichungen die Relaxierung des Pooling Problems erheblich verstärken. Der zweite Teil der Arbeit befasst sich mit einer weiteren Herausforderung in realen Anwendungen, nämlich Unsicherheit in den Eingabedaten. Konkret untersuchen wir die Optimierung des Ausbaus eines Gastransportnetzes, wie z.B. von unserem Projektpartner Open Grid Europe GmbH. Dieses Problem ist bereits bei gegebenen Eingabedaten ein schweres nichtkonvexes gemischt-ganzzahliges Optimierungsproblem. Da zukünftige Nutzungsmuster des Netzes mit großer Unsicherheit behaftet sind, beschreiben wir ein robustes Modell, um den Netzbetreiber gegen verschiedene Szenarien abzusichern. Wir entwickeln einen speziellen Dekompositionsalgorithmus unter Berücksichtigung der hierarchischen Struktur der Ausbauten und der schwachen Kopplung zwischen den Szenarien.Unser Ansatz liefert primale und duale Schranken für Instanzen mit bis zu 256 Szenarien und löst viele beweisbar optimal. Umfangreiche Rechnungen bestätigen die Effizient der vorgestellten Methoden.
The amazing success of computational mathematical optimization over the last decades has been driven more by insights into mathematical structures than by the advance of computing technology. In this vein, we address applications, where nonconvexity in the model and uncertainty in the data pose principal difficulties. The first part of the thesis deals with non-convex quadratic programs. Branch&Bound methods for this problem class depend on tight relaxations. We contribute in several ways: First, we establish a new way to handle missing linearization variables in the well-known Reformulation-Linearization-Technique (RLT). This is implemented into the commercial software CPLEX. Second, we study the optimization of a quadratic objective over the standard simplex or a knapsack constraint. These basic structures appear as part of many complex models. Exploiting connections to the maximum clique problem and RLT, we derive new valid inequalities. Using exact and heuristic separation methods, we demonstrate the impact of the new inequalities on the relaxation and the global optimization of these problems. Third, we strengthen the state-of-the-art relaxation for the pooling problem, a well-known non-convex quadratic problem, which is, for example, relevant in the petrochemical industry. We propose a novel relaxation that captures the essential non-convex structure of the problem but is small enough for an in-depth study. We provide a complete inner description in terms of the extreme points as well as an outer description in terms of inequalities defining its convex hull (which is not a polyhedron). We show that the resulting valid convex inequalities significantly strengthen the standard relaxation of the pooling problem. The second part of this thesis focusses on a common challenge in real world applications, namely, the uncertainty entailed in the input data. We study the extension of a gas transport network, e.g., from our project partner Open Grid Europe GmbH. For a single scenario this maps to a challenging non-convex MINLP. As the future transport patterns are highly uncertain, we propose a robust model to best prepare the network operator for an array of scenarios. We develop a custom decomposition approach that makes use of the hierarchical structure of network extensions and the loose coupling between the scenarios. The algorithm used the single-scenario problem as black-box subproblem allowing the generalization of our approach to problems with the same structure. The scenario-expanded version of this problem is out of reach for today's general-purpose MINLP solvers. Yet our approach provides primal and dual bounds for instances with up to 256 scenarios and solves many of them to optimality. Extensive computational studies show the impact of our work.
URI: http://depositonce.tu-berlin.de/handle/11303/6507
http://dx.doi.org/10.14279/depositonce-6015
Exam Date: 3-Feb-2017
Issue Date: 2017
Date Available: 14-Jul-2017
DDC Class: DDC::500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
Subject(s): mathematical programming
quadratic programming
mixed-integer nonlinear programming
nonconvexity
relaxation
pooling problem
gas network planning
robust optimization
mathematische Programmierung
quadratische Programmierung
gemischt-ganzzahlige nichtlineare Programmierung
Nicht-Konvexität
Relaxierung
Gasnetzplanung
robuste Optimierung
Sponsor/Funder: BMBF, 05M14ZAM, Forschungscampus MODAL - Mathematical Optimization and Data Analysis Laboratories
EC/FP7/316647/EU/Mixed Integer Nonlinear Optimization/MINO
DFG, TRR 154, Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken
Creative Commons License: https://creativecommons.org/licenses/by/4.0/
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Institut für Mathematik » Publications

Files in This Item:
File Description SizeFormat 
schweiger_jonas.pdf2.6 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.