Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-6129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuris, Yuri B.-
dc.contributor.authorVermeeren, Mats-
dc.date.accessioned2017-09-01T08:04:39Z-
dc.date.available2017-09-01T08:04:39Z-
dc.date.issued2016-
dc.identifier.isbn978-3-662-50447-5-
dc.identifier.urihttp://depositonce.tu-berlin.de/handle/11303/6688-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6129-
dc.description.abstractWe develop the concept of pluri-Lagrangian structures for integrable hierarchies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian multiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange equations in their full generality for hierarchies of two-dimensional systems, and construct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.en
dc.language.isoen-
dc.relation.ispartof10.1007/978-3-662-50447-5-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/2.5/-
dc.subject.ddc510 Mathematik-
dc.titleOn the Lagrangian structure of integrable hierarchiesen
dc.typeBook Part-
tub.publisher.universityorinstitutionTechnische Universität Berlin-
dc.type.versionpublishedVersion-
dcterms.bibliographicCitation.doi10.1007/978-3-662-50447-5_11-
dcterms.bibliographicCitation.editorBobenko, Alexander I.-
dcterms.bibliographicCitation.booktitleAdvances in discrete differential geometry-
dcterms.bibliographicCitation.originalpublisherplaceBerlin, Heidelberg-
dcterms.bibliographicCitation.pageend378-
dcterms.bibliographicCitation.pagestart347-
dcterms.bibliographicCitation.originalpublishernameSpringer-
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Institut für Mathematik » Publications

Files in This Item:
File Description SizeFormat 
10.1007_978-3-662-50447-5_11.pdf490.56 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.