Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-6155
Main Title: Potential and recycling strategies for LCD panels from WEEE
Author(s): Ueberschaar, Maximilian
Schlummer, Martin
Jalalpoor, Daniel
Kaup, Nora
Rotter, Vera Susanne
Type: Article
Language Code: en
Is Part Of: https://doi.org/10.14279/depositonce-6156
Abstract: Indium is one of the strategically important materials, which have been characterized as critical by various industrialized countries. Despite its high relevance, only low recycling rates are realized. Its main application is in indium tin oxide (ITO), which is used in the production of liquid crystal displays (LCD). However, recovery strategies for indium from LCDs are not yet being implemented in recycling practices. Although LCDs consist of a sandwich compound with additional materials such as glass (80% ± 5%) and polarizer foils (20% ± 5%), recently published recycling approaches focus mainly on the recovery of indium exclusively. This study, first of all, provides information about the quantity and quality of the materials applied in the LCD panels of the various equipment types investigated, such as notebooks, tablets, mobile phones, smartphones, PC monitors, and LCD TVs. The highest indium mass fraction per mass of LCD was determined in mobile phones and the least indium was found in smartphones. Additionally, we found the significant use of contaminating metals like antimony, arsenic, lead, and strontium in the glass fraction. Thus, specific recovery strategies should focus on selected equipment types with the highest indium potential, which is directly related to the sales of new devices and the number of collected end-of-life devices. Secondly, we have developed and successfully tested a novel recycling approach for separating the sandwich compound to provide single output fractions of panel glass, polarizer foils, and an indium concentrate for subsequent recycling. Unfortunately, the strongly varying content of contaminating metals jeopardizes the recycling of this output fraction. Nonetheless, economic recycling approaches need to address all materials contained, in particular those with the highest share in LCD panels such as polarizer foils and panel glass.
URI: http://depositonce.tu-berlin.de/handle/11303/6729
http://dx.doi.org/10.14279/depositonce-6155
Issue Date: 2017
Date Available: 20-Sep-2017
DDC Class: DDC::600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften::629 Andere Fachrichtungen der Ingenieurwissenschaften
Subject(s): recycling
recovery
critical metals
polarizer foils
glass substrate
LCD panels
Creative Commons License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Recycling
Publisher: MDPI
Publisher Place: Basel
Volume: 2
Issue: 1
Article Number: 7
Publisher DOI: 10.3390/recycling2010007
EISSN: 2313-4321
Appears in Collections:Fachgebiet Kreislaufwirtschaft und Recyclingtechnologie » Publications

Files in This Item:
File Description SizeFormat 
2017_ueberschaar_et-al.pdf4.08 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons