Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-6296
Main Title: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers
Author(s): Oh, Hyung-Suk
Nong, Hong Nhan
Reier, Tobias
Gliech, Manuel
Strasser, Peter
Type: Article
Language Code: en
Abstract: Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm(-2) at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.
URI: https://depositonce.tu-berlin.de//handle/11303/6957
http://dx.doi.org/10.14279/depositonce-6296
Issue Date: 2015
Date Available: 25-Oct-2017
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Sponsor/Funder: DFG, SPP 1613, Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzepte
Creative Commons License: https://creativecommons.org/licenses/by/3.0/
Journal Title: Chemical Science
Publisher: Royal Society of Chemistry
Publisher Place: Cambridge
Volume: 6
Issue: 6
Publisher DOI: 10.1039/c5sc00518c
Page Start: 3321
Page End: 3328
EISSN: 2041-6539
ISSN: 2041-6520
Appears in Collections:Fachgebiet Technische Chemie » Publications

Files in This Item:
File SizeFormat 
c5sc00518c.pdf1.81 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons