Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-6548
Main Title: | μ-values and spectral value sets for linear perturbation classes defined by a scalar product |
Author(s): | Karow, Michael |
Type: | Article |
Language Code: | en |
Abstract: | We study the variation of the spectrum of matrices under perturbations which are self- or skew-adjoint with respect to a scalar product. Computable formulas are given for the associated μ-values. The results can be used to calculate spectral value sets for the perturbation classes under consideration. We discuss the special case of complex Hamiltonian perturbations of a Hamiltonian matrix in detail. |
URI: | https://depositonce.tu-berlin.de//handle/11303/7275 http://dx.doi.org/10.14279/depositonce-6548 |
Issue Date: | 6-Sep-2011 |
Date Available: | 14-Dec-2017 |
DDC Class: | 512 Algebra 519 Wahrscheinlichkeiten, angewandte Mathematik |
Subject(s): | linear systems eigenvalues perturbations spectral value sets μ-values |
License: | http://rightsstatements.org/vocab/InC/1.0/ |
Journal Title: | SIAM Journal on Matrix Analysis and Applications |
Publisher: | Society for Industrial and Applied Mathematics |
Publisher Place: | Philadelphia, Pa. |
Volume: | 32 |
Issue: | 3 |
Publisher DOI: | 10.1137/090774896 |
Page Start: | 845 |
Page End: | 865 |
EISSN: | 1095-7162 |
ISSN: | 0895-4798 |
Appears in Collections: | FG Numerische Lineare Algebra » Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2011_karow.pdf | 445.45 kB | Adobe PDF | ![]() View/Open |
Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.