Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-6797
Main Title: Activating the Crowd: Exploiting User-Item Reciprocity for Recommendation
Author(s): Larson, Martha
Said, Alan
Shi, Yue
Cremonesi, Paolo
Tikk, Domonkos
Karatzoglou, Alexandros
Baltrunas, Linas
Geurts, Jozef
Anguera, Xavi
Hopfgartner, Frank
Type: Conference Object
Language Code: en
Abstract: Recommender systems have always faced the problem of sparse data. In the current era, however, with its demand for highly personalized, real-time, context-aware recommendation, the sparse data problem only threatens to grow worse. Crowd-sourcing, specifically, outsourcing micro-requests for information to the crowd, opens new possibilities to fight the sparse data challenge. In this paper, we lay out a vision for recommender systems that, instead of consulting an external crowd, rely on their own user base to actively supply the rich information needed to improve recommendations. We propose that recommender systems should create and exploit reciprocity between users and items. Specifically, recommender systems should not only recommend items for users (who would like to watch or buy them), but also recommend users for items (that need additional information in order that they can be better recommended by the system). Reciprocal recommendations provide a gentle incentivization that can be deployed non-invasively, yet is powerful enough to promote a productive symbiosis between users and items. By exploiting reciprocity, recommender systems can “look inwards” and activate their own user base to contribute the information needed to improve recommendations for the entire user community.
URI: https://depositonce.tu-berlin.de//handle/11303/7583
http://dx.doi.org/10.14279/depositonce-6797
Issue Date: 12-Oct-2013
Date Available: 16-Apr-2018
DDC Class: 004 Datenverarbeitung; Informatik
Subject(s): recommender systems
human computation
crowdsourcing
License: http://rightsstatements.org/vocab/InC/1.0/
Proceedings Title: CrowdRec’13: Proceedings of the International Workshop on Crowdsourcing and Human Computation for Recommender Systems, Hong Kong, China
Notes: Published version available at http://crowdrec2013.noahlab.com.hk/papers/crowdrec2013_Larson.pdf
Appears in Collections:FG Agententechnologien in betrieblichen Anwendungen und der Telekommunikation (AOT) » Publications

Files in This Item:
File Description SizeFormat 
larson-etal_2013.pdf509.17 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.