Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-7182
Main Title: Real-Time Vision System for License Plate Detection and Recognition on FPGA
Author(s): Rosli, Faird
Elhossini, Ahmed
Juurlink, Ben
Type: Article
Language Code: en
Abstract: Rapid development of the Field Programmable Gate Array (FPGA) offers an alternative way to provide acceleration for computationally intensive tasks such as digital signal and image processing. Its ability to perform parallel processing shows the potential in implementing a high speed vision system. Out of numerous applications of computer vision, this paper focuses on the hardware implementation of one that is commercially known as Automatic Number Plate Recognition (ANPR).Morphological operations and Optical Character Recognition (OCR) algorithms have been implemented on a Xilinx Zynq-7000 All-Programmable SoC to realize the functions of an ANPR system. Test results have shown that the designed and implemented processing pipeline that consumed 63 % of the logic resources is capable of delivering the results with relatively low error rate. Most importantly, the computation time satisfies the real-time requirement for many ANPR applications.
URI: https://depositonce.tu-berlin.de//handle/11303/8019
http://dx.doi.org/10.14279/depositonce-7182
Issue Date: 2015
Date Available: 13-Jul-2018
DDC Class: 004 Datenverarbeitung; Informatik
Subject(s): FPGA
Field Programmable Gate Array
ANPR
Automatic Number Plate Recognition
OCR
Optical Character Recognition
license plate detection
License: http://rightsstatements.org/vocab/InC/1.0/
Journal Title: PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware
Publisher: Gesellschaft für Informatik e.V., Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware, PARS
Publisher Place: Erlangen
Volume: 32
Issue: 1
Page Start: 69
Page End: 79
ISSN: 0177-0454
Appears in Collections:FG Architektur eingebetteter Systeme » Publications

Files in This Item:
File Description SizeFormat 
rosli_etal_2015.pdf1.74 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.