Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-8095
Main Title: Pinning of interfaces in random media
Author(s): Dirr, Nicolas
Dondl, Patrick W.
Scheutzow, Michael
Type: Article
Language Code: en
Abstract: For a model for the propagation of a curvature sensitive interface in a time independent random medium, as well as for a linearized version which is commonly referred to as Quenched Edwards– Wilkinson equation, we prove existence of a stationary positive supersolution at non-vanishing applied load. This leads to the emergence of a hysteresis that does not vanish for slow loading, even though the local evolution law is viscous (in particular, the velocity of the interface in the model is linear in the driving force).
URI: https://depositonce.tu-berlin.de//handle/11303/8969
http://dx.doi.org/10.14279/depositonce-8095
Issue Date: 2011
Date Available: 9-Jan-2019
DDC Class: 510 Mathematik
Subject(s): QEW
phase boundaries
pinning
random environment
Sponsor/Funder: DFG, FOR 718, Analysis and Stochastics in Complex Physical Systems
License: http://rightsstatements.org/vocab/InC/1.0/
Journal Title: Interfaces and free boundaries
Publisher: European Mathematical Society
Publisher Place: Zürich
Volume: 13
Issue: 3
Publisher DOI: 10.4171/IFB/265
Page Start: 411
Page End: 421
EISSN: 1463-9971
ISSN: 1463-9963
Notes: Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
Appears in Collections:FG Stochastische Analysis » Publications

Files in This Item:
File Description SizeFormat 
Dirr_et_al_2011.pdf166.33 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.