Please use this identifier to cite or link to this item:
Main Title: Reducing global CO2 emissions with the technologies we have
Author(s): Ward, Hauke
Radebach, Alexander
Vierhaus, Ingmar
Fügenschuh, Armin
Steckel, Jan Christoph
Type: Article
Language Code: en
Is Part Of: 10.14279/depositonce-6871
Abstract: The energy intensities of the various industrial sectors differ considerably across countries. This suggests a potential for emissions reductions through improved accessibility to efficient technologies. This paper estimates an upper-bound CO2 emission mitigation potential that could theoretically be achieved by improved access to efficient technologies in industrial sectors. We develop a linear optimization framework that facilitates the exchange of sectoral production technologies based on the World Input-Output Database (WIOD), assuming perfect substitutability of technologies and homogeneity within economic sectors, while ignoring barriers to technological adoption and price driven adjustments. We consider the full global supply chain network and multiple upstream production inputs in addition to energy demand. In contrast to existing literature our framework allows to consider supply chain effects of technology replacements. We use our model to calculate emission reduction potentials for varying levels of access to technology. If best practice technologies were made available globally, CO2 emissions could theoretically be reduced by more than 10 gigatons (Gt). In fact, even second-tier production technologies would create significant global reduction potentials. We decompose sectoral emission reductions to identify contributions by changes in energy intensity, supply chain effects and changes in carbon intensities. Excluding the latter, we find that considering supply chain effects increases total mitigation potentials by 14%. The largest CO2 emission reduction potentials are found for a small set of developing countries.
Issue Date: 2017
Date Available: 15-Feb-2019
DDC Class: 330 Wirtschaft
Subject(s): GHG mitigation potential
sectoral energy intensities
technology transfer
multi-regional input output data
multiple production inputs
supply chain effects
Sponsor/Funder: DFG, SFB 1026, Sustainable Manufacturing - Globale Wertschöpfung nachhaltig gestalten
Journal Title: Resource and energy economics
Publisher: Elsevier
Publisher Place: Amsterdam
Volume: 49
Publisher DOI: 10.1016/j.reseneeco.2017.05.001
Page Start: 201
Page End: 217
ISSN: 0928-7655
Appears in Collections:SFB 1026 - Sustainable Manufacturing » Publications
FG Ökonomie des Klimawandels » Publications

Files in This Item:
File Description SizeFormat 
Ward_etal_2017.pdf3.21 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons