Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-8266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBazzan, Ana L. C.-
dc.contributor.authorOliveira, Denise de-
dc.contributor.authorKlügl, Franziska-
dc.contributor.authorNagel, Kai-
dc.date.accessioned2019-03-01T14:20:58Z-
dc.date.available2019-03-01T14:20:58Z-
dc.date.issued2008-
dc.identifier.isbn978-3-540-77947-6-
dc.identifier.isbn978-3-540-77949-0-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9180-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8266-
dc.description.abstractOne way to cope with the increasing traffic demand is to integrate standard solutions with more intelligent control measures. However, the result of possible interferences between intelligent control or information provision tools and other components of the overall traffic system is not easily predictable. This paper discusses the effects of integrating co-adaptive decision-making regarding route choices (by drivers) and control measures (by traffic lights). The motivation behind this is that optimization of traffic light control is starting to be integrated with navigation support for drivers. We use microscopic, agent-based modelling and simulation, in opposition to the classical network analysis, as this work focuses on the effect of local adaptation. In a scenario that exhibits features comparable to real-world networks, we evaluate different types of adaptation by drivers and by traffic lights, based on local perceptions. In order to compare the performance, we have also used a global level optimization method based on genetic algorithms.en
dc.language.isoen-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc380 Handel, Kommunikation, Verkehrde
dc.subject.othertravel timeen
dc.subject.othermultiagent systemen
dc.subject.otherautonomous agenten
dc.subject.otherroute choiceen
dc.subject.otheraverage travel timeen
dc.titleTo Adapt or Not to Adapt – Consequences of Adapting Driver and Traffic Light Agentsen
dc.typeConference Objecten
tub.accessrights.dnbdomain-
tub.publisher.universityorinstitutionTechnische Universität Berlinde
dc.identifier.eissn1611-3349-
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1007/978-3-540-77949-0_1-
dcterms.bibliographicCitation.editorTuyls, Karl-
dcterms.bibliographicCitation.editorNowe, Ann-
dcterms.bibliographicCitation.editorGuessoum, Zahia-
dcterms.bibliographicCitation.editorKudenko, Daniel-
dcterms.bibliographicCitation.proceedingstitleAdaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning. AAMAS 2005, ALAMAS 2007, ALAMAS 2006en
dcterms.bibliographicCitation.originalpublisherplaceBerlin, Heidelbergde
dcterms.bibliographicCitation.pageend14-
dcterms.bibliographicCitation.pagestart1-
dcterms.bibliographicCitation.originalpublishernameSpringeren
Appears in Collections:FG Verkehrssystemplanung und Verkehrstelematik » Publications

Files in This Item:
File Description SizeFormat 
bazzan_etal_2008.pdf799.44 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.