Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-8619
Main Title: Artificial Neural Networks (ANNs) as a Novel Modeling Technique in Tribology
Author(s): Argatov, Ivan
Type: Article
Language Code: en
Abstract: In the present paper, artificial neural networks (ANNs) are considered from a mathematical modeling point of view. A short introduction to feedforward neural networks is outlined, including multilayer perceptrons (MLPs) and radial basis function (RBF) networks. Examples of their applications in tribological studies are given, and important features of the data-driven modeling paradigm are discussed.
URI: https://depositonce.tu-berlin.de/handle/11303/9574
http://dx.doi.org/10.14279/depositonce-8619
Issue Date: 29-May-2019
Date Available: 1-Jul-2019
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Subject(s): artificial neural network
data-driven modeling
tribological properties
wear
fretting
Sponsor/Funder: DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlin
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Frontiers in Mechanical Engineering
Publisher: Frontiers Media
Publisher Place: Lausanne
Volume: 5
Article Number: 30
Publisher DOI: 10.3389/fmech.2019.00030
EISSN: 2297-3079
Appears in Collections:FG Systemdynamik und Reibungsphysik » Publications

Files in This Item:
File Description SizeFormat 
fmech-05-00030.pdf1.99 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons