Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Influence of Stoichiometry on the Two-Phase Flow Behavior of Proton Exchange Membrane Electrolyzers
Author(s): Panchenko, Olha
Giesenberg, Lennard
Borgardt, Elena
Zwaygardt, Walter
Kardjilov, Nikolay
Markötter, Henning
Arlt, Tobias
Manke, Ingo
Müller, Martin
Stolten, Detlef
Lehnert, Werner
Type: Article
Language Code: en
Abstract: In order for electrolysis cells to operate optimally, mass transport must be improved. The key initial component for optimal operation is the current collector, which is also essential for mass transport. Water as an educt of the reaction must be evenly distributed by the current collector to the membrane electrode assembly. As products of the reaction, hydrogen and oxygen must also be directed quickly and efficiently through the current collector into the channel and removed from the cell. The second key component is the stoichiometry, which includes the current density and water volume flow rate and represents the ratio between the water supplied and water consumed. This study presents the correlation of the stoichiometry, two-phase flow in the channel and gas fraction in the porous transport layer for the first time. The gas-water ratio in the channel and porous transport layer during cell operation with various stoichiometries was investigated by means of a model in the form of an ex situ cell without electrochemical processes. Bubble formation in the channel was observed using a transparent cell. The gas-water exchange in the porous transport layer was then investigated using neutron radiography.
Issue Date: 23-Jan-2019
Date Available: 26-Aug-2019
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Subject(s): proton exchange membrane electrolysis
neutron radiography
two-phase flow
flow regime
Sponsor/Funder: BMWi, 03ET6044A, Neuartige kostengünstige Stromkollektoren für die PEM-Elektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Teilvorhaben: Entwicklung und Charakterisierung neuartiger Stromkollektoren für die Wasserelektrolyse
Journal Title: Energies
Publisher: MDPI
Publisher Place: Basel
Volume: 12
Issue: 3
Article Number: 350
Publisher DOI: 10.3390/en12030350
EISSN: 1996-1073
Appears in Collections:FG Struktur und Eigenschaften von Materialien » Publications

Files in This Item:
Format: Adobe PDF | Size: 3.01 MB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons