Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-8925
For citation please use:
For citation please use:
Main Title: | Improving GNSS Zenith Wet Delay Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm Season |
Author(s): | Zus, Florian Douša, Jan Kačmařík, Michal Václavovic, Pavel Balidakis, Kyriakos Dick, Galina Wickert, Jens |
Type: | Article |
URI: | https://depositonce.tu-berlin.de/handle/11303/9915 http://dx.doi.org/10.14279/depositonce-8925 |
License: | https://creativecommons.org/licenses/by/4.0/ |
Abstract: | The Benchmark data set collected within the European COST Action ES1206 has aimed to support the development and validation of advanced Global Navigation Satellite System (GNSS) tropospheric products, in particular high-resolution zenith delays and tropospheric gradients. In this work we utilize this unique data set to show that the interpolation of GNSS Zenith Wet Delays (ZWDs) can be improved by utilizing tropospheric gradients. To do this we first prove the concept with simulated observations, that is, zenith delays and tropospheric gradients derived from a Numerical Weather Model. We show how tropospheric gradients can be converted to ZWD gradients. Then the ZWD gradients together with the ZWDs at selected reference stations are used in an inverse distance weighting interpolation scheme to estimate the ZWD at some target station. For a station configuration with an average station distance of 50 km in Germany and a period of two months (May and June 2013), we find an improvement of 20% in interpolated ZWDs when tropospheric gradients are taken into account. Next, we replace the simulated by real observations, that is, zenith delays and tropospheric gradients from a Precise Point Positioning (PPP) solution provided with the G-Nut/Tefnut analysis software. Here we find an improvement of 10% in interpolated ZWDs when tropospheric gradients are taken into account. |
Subject(s): | GNSS zenith wet delay tropospheric gradient numerical weather prediction model interpolation |
Issue Date: | 21-Mar-2019 |
Date Available: | 27-Aug-2019 |
Language Code: | en |
DDC Class: | 550 Geowissenschaften 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten |
Journal Title: | Remote Sensing |
Publisher: | MDPI |
Volume: | 11 |
Issue: | 6 |
Article Number: | 674 |
Publisher DOI: | 10.3390/rs11060674 |
EISSN: | 2072-4292 |
TU Affiliation(s): | Fak. 6 Planen Bauen Umwelt » Inst. Geodäsie und Geoinformationstechnik » FG GNSS-Fernerkundung, Navigation und Positionierung |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
This item is licensed under a Creative Commons License