Repository: DepositOnce â€“ institutional repository for research data and publications of TU Berlin https://depositonce.tu-berlin.de
TY - RPRT
AU - Mehl, Christian
AU - Mehrmann, Volker
AU - Wojtylak, Michal
PY - 2018
TI - Linear algebra properties of dissipative Hamiltonian descriptor systems
DO - 10.14279/depositonce-14684
UR - http://dx.doi.org/10.14279/depositonce-14684
PB - Technische UniversitÃ¤t Berlin
LA - en
AB - A wide class of matrix pencils connected with dissipative Hamiltonian descriptor systems is investigated. In particular, the following properties are shown: all eigenvalues are in the closed left half plane, the nonzero finite eigenvalues on the imaginary axis are semisimple, the index is at most two, and there are restrictions for the possible left and right minimal indices. For the case that the eigenvalue zero is not semisimple, a structure-preserving method is presented that perturbs the given system into a Lyapunov stable system.
KW - port Hamiltonian system
KW - descriptor system
KW - dissipative Hamiltonian system
KW - matrix pencil
KW - singular pencil
KW - Kronecker canonical form
KW - Lyapunov stability
ER -