Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential

dc.contributor.authorHenning, Laura M.
dc.contributor.authorMüller, Julian T.
dc.contributor.authorSmales, Glen J.
dc.contributor.authorPauw, Brian R.
dc.contributor.authorSchmidt, Johannes
dc.contributor.authorBekheet, Maged F.
dc.contributor.authorGurlo, Aleksander
dc.contributor.authorSimon, Ulla
dc.date.accessioned2023-01-26T12:10:37Z
dc.date.available2023-01-26T12:10:37Z
dc.date.issued2022-08-15
dc.description.abstractMechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm−3), and specific surface area (451–180 m2 g−1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 °C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m−2 h−1 bar−1), permeability (1.25 × 10−14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berlinen
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.identifier.eissn2516-0230
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18075
dc.identifier.urihttps://doi.org/10.14279/depositonce-16868
dc.language.isoen
dc.relation.ispartof10.14279/depositonce-17848
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc541 Physikalische Chemiede
dc.subject.otherInterconnected hierarchical porosityen
dc.subject.otherS-sintered monolithsen
dc.subject.otherC-sintered monolithsen
dc.subject.otherMechanically stable monolithsen
dc.subject.otherHierarchically porous monolithsen
dc.subject.otherMesoporous silicaen
dc.titleHierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potentialen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.doi10.1039/D2NA00368F
dcterms.bibliographicCitation.issue18
dcterms.bibliographicCitation.journaltitleNanoscale advances
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistry
dcterms.bibliographicCitation.pageend3908
dcterms.bibliographicCitation.pagestart3892
dcterms.bibliographicCitation.volume4
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Werkstoffwissenschaften und -technologien::FG Keramische Werkstoffe
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Henning_etal_2022.pdf
Size:
5.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections