Enabling Iron‐Based Highly Effective Electrochemical Water‐Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst

dc.contributor.authorChakraborty, Biswarup
dc.contributor.authorBeltrán‐Suito, Rodrigo
dc.contributor.authorHausmann, J. Niklas
dc.contributor.authorGarai, Somenath
dc.contributor.authorDriess, Matthias
dc.contributor.authorMenezes, Prashanth W.
dc.date.accessioned2020-11-10T14:21:00Z
dc.date.available2020-11-10T14:21:00Z
dc.date.issued2020-06-24
dc.date.updated2020-11-09T19:34:31Z
dc.description.abstractA strategy to overcome the unsatisfying catalytic performance and the durability of monometallic iron‐based materials for the electrochemical oxygen evolution reaction (OER) is provided by heterobimetallic iron–metal systems. Monometallic Fe catalysts show limited performance mostly due to poor conductivity and stability. Here, by taking advantage of the structurally ordered and highly conducting FeSn2 nanostructure, for the first time, an intermetallic iron material is employed as an efficient anode for the alkaline OER, overall water‐splitting, and also for selective oxygenation of organic substrates. The electrophoretically deposited FeSn2 on nickel foam (NF) and fluorine‐doped tin oxide (FTO) electrodes displays remarkable OER activity and durability with substantially low overpotentials of 197 and 273 mV at 10 mA cm−2, respectively, which outperform most of the benchmarking NiFe‐based catalysts. The resulting superior activity is attributed to the in situ generation of α‐FeO(OH)@FeSn2 where α‐FeO(OH) acts as the active site while FeSn2 remains the conductive core. When the FeSn2 anode is coupled with a Pt cathode for overall alkaline water‐splitting, a reduced cell potential (1.53 V) is attained outperforming that of noble metal‐based catalysts. FeSn2 is further applied as an anode to produce value‐added products through selective oxygenation reactions of organic substrates.en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn1614-6840
dc.identifier.issn1614-6832
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11883
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10774
dc.language.isoenen
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.otheriron stannidesen
dc.subject.otheroverall water splittingen
dc.subject.otheroxygenationen
dc.subject.otheroxyhydroxidesen
dc.subject.otherwater oxidationen
dc.titleEnabling Iron‐Based Highly Effective Electrochemical Water‐Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalysten
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2001377en
dcterms.bibliographicCitation.doi10.1002/aenm.202001377en
dcterms.bibliographicCitation.issue30en
dcterms.bibliographicCitation.journaltitleAdvanced Energy Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume10en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Chemie>FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
AENM_AENM202001377.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Collections