Adapting the Technology Performance Level Integrated Assessment Framework to Low-TRL Technologies Within the Carbon Capture, Utilization, and Storage Industry, Part I

dc.contributor.authorMendoza, Nicole
dc.contributor.authorMathai, Thomas
dc.contributor.authorBoren, Blake
dc.contributor.authorRoberts, Jesse
dc.contributor.authorNiffenegger, James
dc.contributor.authorSick, Volker
dc.contributor.authorZimmermann, Arno W.
dc.contributor.authorWeber, Jochem
dc.contributor.authorSchaidle, Joshua
dc.date.accessioned2022-11-09T10:44:42Z
dc.date.available2022-11-09T10:44:42Z
dc.date.issued2022-03-18
dc.date.updated2022-09-04T06:35:05Z
dc.description.abstractWith the urgent need to mitigate climate change and rising global temperatures, technological solutions that reduce atmospheric CO2 are an increasingly important part of the global solution. As a result, the nascent carbon capture, utilization, and storage (CCUS) industry is rapidly growing with a plethora of new technologies in many different sectors. There is a need to holistically evaluate these new technologies in a standardized and consistent manner to determine which technologies will be the most successful and competitive in the global marketplace to achieve decarbonization targets. Life cycle assessment (LCA) and techno-economic assessment (TEA) have been employed as rigorous methodologies for quantitatively measuring a technology's environmental impacts and techno-economic performance, respectively. However, these metrics evaluate a technology's performance in only three dimensions and do not directly incorporate stakeholder needs and values. In addition, technology developers frequently encounter trade-offs during design that increase one metric at the expense of the other. The technology performance level (TPL) combined indicator provides a comprehensive and holistic assessment of an emerging technology's potential, which is described by its techno-economic performance, environmental impacts, social impacts, safety considerations, market/deployability opportunities, use integration impacts, and general risks. TPL incorporates TEA and LCA outputs and quantifies the trade-offs between them directly using stakeholder feedback and requirements. In this article, the TPL methodology is being adapted from the marine energy domain to the CCUS domain. Adapted metrics and definitions, a stakeholder analysis, and a detailed foundation-based application of the systems engineering approach to CCUS are presented. The TPL assessment framework is couched within the internationally standardized LCA framework to improve technical rigor and acceptance. It is demonstrated how stakeholder needs and values can be directly incorporated, how LCA and TEA metrics can be balanced, and how other dimensions (listed earlier) can be integrated into a single metric that measures a technology's potential.
dc.identifier.eissn2624-9553
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17645
dc.identifier.urihttps://doi.org/10.14279/depositonce-16429
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc333 Boden- und Energiewirtschaftde
dc.subject.ddc500 Naturwissenschaften und Mathematikde
dc.subject.otherintegrated assessmenten
dc.subject.othertechnology performance levelen
dc.subject.othertechnology assessment frameworken
dc.subject.othercombined indicatoren
dc.subject.othertechnology development trajectoryen
dc.subject.otherlife cycle assessmenten
dc.subject.othertechno-economic analysisen
dc.subject.othercarbon capture utilization and storageen
dc.titleAdapting the Technology Performance Level Integrated Assessment Framework to Low-TRL Technologies Within the Carbon Capture, Utilization, and Storage Industry, Part I
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber818786
dcterms.bibliographicCitation.doi10.3389/fclim.2022.818786
dcterms.bibliographicCitation.journaltitleFrontiers in Climate
dcterms.bibliographicCitation.originalpublishernameFrontiers
dcterms.bibliographicCitation.originalpublisherplaceLausanne
dcterms.bibliographicCitation.volume4
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Mehrphasenreaktionstechnik
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 6 of 6
Loading…
Thumbnail Image
Name:
fclim-04-818786.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Loading…
Thumbnail Image
Name:
fclim-04-818786-g0005.tif
Size:
917.96 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fclim-04-818786-g0001.tif
Size:
793.35 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fclim-04-818786-g0002.tif
Size:
635.26 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fclim-04-818786-g0003.tif
Size:
1.01 MB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fclim-04-818786-g0004.tif
Size:
2.04 MB
Format:
Tag Image File Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections