Point defect-induced UV-C absorption in aluminum nitride epitaxial layers grown on sapphire substrates by metal-organic chemical vapor deposition

dc.contributor.authorTillner, Nadine
dc.contributor.authorFrankerl, Christian
dc.contributor.authorNippert, Felix
dc.contributor.authorDavies, Matthew J.
dc.contributor.authorBrandl, Christian
dc.contributor.authorLösing, Rainer
dc.contributor.authorMandl, Martin
dc.contributor.authorLugauer, Hans-Jürgen
dc.contributor.authorZeisel, Roland
dc.contributor.authorHoffmann, Axel
dc.contributor.authorWaag, Andreas
dc.contributor.authorHoffmann, Marc Patrick
dc.date.accessioned2021-10-26T15:13:48Z
dc.date.available2021-10-26T15:13:48Z
dc.date.issued2020-07-28
dc.description.abstractHerein, the optical properties of aluminum nitride (AlN) epitaxial layers grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD) are reported. The structures investigated in this study are grown at highly different degrees of supersaturation in the MOCVD process. In addition, both pulsed and continuous growth conditions are employed and AlN is deposited on nucleation layers favoring different polarities. The samples are investigated by photoluminescence (PL), photoluminescence excitation (PLE), and absorption spectroscopy and are found to vary significantly in absorption and emission characteristics. Two distinct absorption bands in the UV-C spectral range are observed and examined in greater detail, with either giving rise to a significant absorption coefficient of around 1000 cm−1. The corresponding defect transitions are identified by PL spectroscopy. Combined with secondary-ion mass spectrometry (SIMS) measurements, these absorption bands are allocated to the incorporation of carbon and oxygen impurities, depending on the applied growth conditions. Furthermore, similarities with other epitaxial growth techniques serving as basis for UV-C applications are highlighted. These results are highly relevant for a better understanding of absorption issues in AlN templates grown by various deposition techniques. In addition, consequences for the growth of efficient UV-C devices by MOCVD on sapphire substrates are outlined.en
dc.description.sponsorshipBMWi, 16IPCEI623, Errichtung und Ausstattung einer Produktionsumgebung für neuartige optoelektronische Bauelementeen
dc.description.sponsorshipBMBF, 03ZZ0134A, Zwanzig20 - Advanced UV for Life - Verbundvorhaben: UV Power; TP1: Entwicklung von UVC Hochleistungsleuchtdioden um 280 nmen
dc.description.sponsorshipDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelementeen
dc.description.sponsorshipDFG, 390837967, EXC 2123: QuantumFrontiers - Licht und Materie an der Quantengrenzeen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020
dc.identifier.eissn1521-3951
dc.identifier.issn0370-1972
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13745
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12521
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-12224
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc535 Licht, Infrarot- und Ultraviolettphänomenede
dc.subject.otherabsorptionen
dc.subject.otherAlNen
dc.subject.otherepitaxyen
dc.subject.othermetal-organic chemical vapor depositionen
dc.subject.otherpoint defectsen
dc.titlePoint defect-induced UV-C absorption in aluminum nitride epitaxial layers grown on sapphire substrates by metal-organic chemical vapor depositionen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2000278en
dcterms.bibliographicCitation.doi10.1002/pssb.202000278en
dcterms.bibliographicCitation.issue12en
dcterms.bibliographicCitation.journaltitlePhysica Status Solidi (B) - Basic Solid State Physicsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume257en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::FG Optische Charakterisierung von Halbleiternde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Optische Charakterisierung von Halbleiternde
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Tillner_etal_Point_2020.pdf
Size:
443.51 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections