Thumbnail Image

Optical and electrical optimization by advanced characterization of monolithic perovskite/silicon tandem solar cells

Köhnen, Eike

Hybrid metal-halide perovskite solar cells have experienced a tremendous development within a short time period. In 2009 the first perovskite single-junction solar cell with a power conversion efficiency (PCE) of 3.8% was presented. Just eleven years later, in year 2020, a PCE of 25.5% was achieved, which approaches the value of silicon single-junction solar cells. As metal-halide perovskite solar cells can be bandgap-optimized for top cells via compositional tuning, both types of solar cells can be combined into perovskite/silicon tandem solar cells. The synergy can enable higher efficiencies than the single cells alone, while the addition of the perovskite can potentially be done inexpensively, which makes this technology attractive for the photovoltaic market. The first monolithic perovskite/silicon tandem solar cell was presented in 2015 with a PCE of 13.7%. Just two years later, in 2017, when the work on this dissertation started, the PCE was already increased to 23.6%. This dissertation covers the PCE improvement of monolithic perovskite/silicon tandem solar cells to a world record level above 29% and makes an important contribution to the understanding of the principles of device operation and to the techniques used to analyze these cells. Despite the transition to an optically advantageous tandem solar cell design, the optical properties in the multi-layer stack with more than ten different films have a significant influence on the photogenerated current density (JPh) that can be generated in both subcells. Especially high reflection and parasitic absorption reduce the amount of light available for power conversion. In a first study covered by this dissertation, precise adjustments of thickness and deposition conditions of the perovskite layer, selective contact layers and transparent conductive oxide were presented. These optimizations led to an improvement from 25.0% to 26.0% due to reduced reflection and better matching of the photogenerated current densities of the perovskite and silicon subcell. The cumulated photogenerated current density of 39.5mAcm−2 for this tandem cell, which had a flat front side, is today still one of the highest values and even comparable to cells with a textured front side. Although the short-circuit current density (JSC) could be increased by 1.4mAcm−2, the fill factor (FF) decreased by ∼2 percentage points when the subcells operate closer to current matching conditions. Thus, we accounted this reduction to the reduced mismatch and analyzed this in more detail: We artificially induced various mismatch conditions by illuminating the tandem solar cell with different LED-based spectra. We found that the FF reached a minimum close to current matching conditions. If current mismatch between both subcells occurs in the tandem solar cell (i.e. either of the subcells generated a lower current density), the fill factor increased. This effect partially compensates the reduction of the JSC induced by current mismatched subcells and makes monolithic tandem solar cells less sensitive to small mismatch conditions. This is highly important for energy yield analysis and has to be incorporated into yield simulations for more precise analysis. We verified the effect of FF enhancement under current mismatch by simulating the tandem solar cell electrically. Although the simulated FF trend could be well reproduced well as a function of the mismatch, the absolute value of the FF was higher when compared to the measured tandem solar cell. This revealed that further investigation and advanced characterization methods are required to reconstruct the tandem solar cell properly, understand the individual subcell characteristics in more detail and to improve the cell to reach the values obtained by electrical simulations. The second study is linked to the FF losses and addresses the optimization of the FF and open-circuit voltage (VOC) to further improve the PCE further. This was enabled by a self-assembled monolayer (SAM) as a hole-selective contact in the perovskite top cell, which was for the first time utilized in these tandem solar cells. Besides commercially available SAM molecules, which were shown to perform better in single-junction solar cells than the typically used polymer PTAA (poly[bis(4-phenyl)(2,5,6 trimentlyphenyl) amine]), we introduced the molecule Me-4PACz ([4-(3,6-dimethyl-9H-carbazol-9-yl) butyl]phosphonic acid), a new SAM for perovskitebased tandem and single-junction solar cells. In addition to the well-passivated perovskite interface, it enabled a fast hole extraction, which led to high VOC and FF values and an improved photostability for perovskite compositions with high bromide loading to enable 1.68 eV bandgaps, which typically suffer from halide segregation. In tandem solar cells we found similar benefits. All SAMs enabled higher PCE values compared to cells using PTAA as hole-selective contact. Furthermore, Me-4PACz led to high VOC and FF values of up to 1.92V and 81%, respectively. Together with a high JSC, which was optimized in the previous study, a certified world record PCE of 29.15% was enabled. To evaluate the long-term stability of tandem solar cells, we specifically designed and fabricated a light source consisting of two types of LED arrays (193 LEDs in total), enabling precise control to match subcell photocurrent generation with AM1.5g conditions over long periods. Non-encapsulated tandem solar cells were measured continuously for 300 hours in air with relative humidity between 30-40%. The tandem solar cell with Me-4PACz showed highest stability, retaining 95.5% of its initial PCE. As evident from the first study, detailed analysis of the subcell is desired. However, typically it is difficult to evaluate the performance of the individual subcells in series connected tandem solar cells. We used injection-dependent absolute electroluminescence measurements to access the performance of the individual subcells. With this method, we were able to reconstruct the subcell current density-voltage characteristics without the influence of series resistances. From these reconstructions the photovoltaic parameters such as the maximum power point or pseudo fill factor could be determined. Furthermore, the parametrized reconstructed current density-voltage curves were used to simulate the tandem solar cell electrically, which revealed that with this tandem structure a PCE of more than 32% is achievable if series resistance losses can be minimized. The rapid increase in tandem efficiency also increases the need for fast technology transfer into industry. All previously reported high-efficiency tandem solar cells have in common that they are based on >250 μm thick floatzone (FZ) silicon with most of them having a polished front side to enable efficient solution processing of the thin top cell. However, for mass production and thus for economic reasons, it is crucial to use thinner czochralski (CZ) grown wafers, ideally without the need for polishing. Therefore, in the third study, we fabricated tandem solar cells on 100 μm thin CZ silicon based bottom cells with a rough surface and compared the performance to tandem cells fabricated on laboratory-typical bottom cells accompanied by a 1000 hour MPP-track and optical simulations. We found that the median performance of both types was with 27.8% equally high with maximum values of 27.89% and 28.15% for CZ- and FZ-based tandem cells, respectively. However, the individual photovoltaic performance parameters differed: The thinner bottom cell for CZ-based devices enabled higher VOC values due to reduced recombination current density. Furthermore, the photogenerated current density was reduced in the case of thinner silicon subcells, which led to an increased current mismatch. As investigated in the first study, this results in higher FF values of the CZ-based devices. Optical simulations revealed that the reduction of the bottom cell thickness from 280 μm to 100 μm enables to widen the top cell bandgap by ∼0.02 eV and hence further increase the PCE, if current matching conditions should be maintained. Interestingly, this widening is independent of the perovskite’s thickness. On the one hand the widened bandgap could lead to a higher VOC, on the other hand wider bandgaps typically suffer from reduced stability and strong interface recombination. We found the same results for double-side textured tandem solar cells with conformally deposited perovskite and the findings regarding the optimum top-cell bandgap for industrial perovskite/silicon tandem solar cells are highly important for the future development of these fascinating tandem solar cells. This dissertation plays an important role in the development of perovskite/silicon tandem solar cells and hence, will hopefully contribute to the expansion of photovoltaics.
Hybride Metallhalogenid Perowskit-Solarzellen haben in sehr kurzer Zeit eine enorme Entwicklung erfahren. Die erste Perowskit-Solarzelle wurde 2009 mit einem Wirkungsgrad von 3.8% veröffentlicht. Nur 11 Jahre später, im Jahr 2020, konnte der Wirkungsgrad auf 25.5% gesteigert werden, welches sich der Effizienz von Silizium-Solarzellen nähert. Da sich die Bandlücke des Perowskits über die chemische Zusammensetzung anpassen und für eine Oberzelle optimieren lässt, können beide Arten von Solarzellen zu sogenannten Perowskit/Silizium Tandem-Solarzellen kombiniert werden. Das Zusammenspiel der beiden Solarzellen ermöglicht einen deutlich höheren Wirkungsgrad als jede Zelle für sich. Es wird davon ausgegangen, dass sich die Perowskit-Oberzelle kostengünstig herstellen lässt, was diese Technologie attraktiv für die Solarindustrie macht. Die erste Perowskit/Silizium-Tandem-Solarzelle wurde 2015 mit einem Wirkungsgrad von 13.7% veröffentlicht. Nur zwei Jahre später, im Jahr 2017, als die Arbeit an dieser Dissertation begann, wurde bereits ein Wirkungsgrad von 23.6% erreicht. Diese Dissertation behandelt die Verbesserung des Wirkungsgrades von Perowskit/Silizium-Tandem-Solarzellen auf ein Weltrekord-Niveau von über 29% und leistet einen wichtigen Beitrag zum Verständnis, zur Wirkungsweise und zu Analysemethoden dieser Technologie. Trotz einer Veränderung der Architektur, welche für Tandem-Solarzellen optisch vorteilhaft ist, haben die optischen Eigenschaften in dem Vielschichtsystem, welches aus mehr als zehn verschiedenen Schichten besteht, starken Einfluss auf die in den Teil-Solarzellen generierte Photostromdichte JPh. Vor allem die hohe Reflexion und parasitäre Absorption reduziert den nutzbaren Anteil des Lichts. In der ersten Studie in dieser Dissertation werden präzise Anpassungen der Schichtdicke und den Abscheidebedingungen vom Perowskit und den selektiven Kontaktschichten vorgenommen, welche die Reflexion verringern und eine bessere Übereinstimmung der Photoströme in den Teil-Solarzellen hervorbringt und somit den Wirkungsgrad von 25.0% auf 26.0% steigern. Die Summe der Photoströme, welche nach Optimierung 39.5mAcm−2 beträgt, ist bis heute einer der höchsten JPh-Werte für Tandem-Solarzellen mit planarer Vorderseite. Er ist sogar vergleichbar mit beidseitig texturierten Tandem-Solarzellen. Auch wenn die Kurzschlussstromdichte JSC um 1.4mAcm−2 gesteigert werden konnte, ist der Füllfaktor (FF) gleichzeitig um rund zwei Prozentpunkte gesunken, welches wir der verbesserten Übereinstimmung der JPh-Werte zuschrieben. Um diesen Effektgenauer zu analysieren wurde die Tandem-Solarzelle mittels eines LED-Sonnensimulators unter unterschiedlichen Lichtbedingungen gemessen um künstlich das Ungleichgewicht der JPh-Werte zu erzeugen. Wir fanden heraus, dass der FF am geringsten ist, wenn die Teil-Solarzellen ungefähr im Stromgleichgewicht sind. Sobald es ein Ungleichgewicht der Ströme gab (d.h., dass entweder die Silizium- oder die Perowskit-Solarzelle weniger Strom generiert), erhöhte sich der FF. Dieser Effekt kompensiert teilweise den durch das Ungleichgewicht reduzierten Kurzschlussstrom und macht die Tandem-Solarzellen weniger empfindlich gegenüber geringen Ungleichgewichten der Photoströme. Das ist ein sehr wichtiger Aspekt, welcher in die Analyse der Solarenergieausbeute berücksichtigt werden muss um präzise Ergebnisse zu erhalten. Wir bestätigten die Erhöhung des FF aufgrund des Stromungleichgewichts mit elektrischen Simulationen. Auch wenn der Verlauf des Füllfaktors in Abhängigkeit vom Stromungleichgewicht nachgestellt werden konnte, war der simulierte FF höher als der experimentell gemessene FF. Das zeigt, dass weitere Untersuchungen und fortgeschrittenere Messmethoden notwendig sind um die Tandem-Solarzellen und die jeweiligen Teil-Solarzellen besser charakterisieren zu können und eine bessere Übereinstimmung von simulierten und experimentellen Ergebnissen zu bekommen. Mit dem daraus gewonnenen Wissen können die Eigenschaften der Tandem-Solarzellen verbessert werden. Die zweite Studie in dieser Dissertation knüpft an den FF-Verlust an und behandelt die Optimierung des FFs und der Leerlaufspannung VOC um denWirkungsgrad weiter zu steigern. Dies wurde durch die Nutzung einer selbstorganisierenden Schicht bestehend aus einer einzelnen Lage (engl.: self-assembled monolayer; SAM) als lochselektiver Kontakt ermöglicht, welcher das erste Mal in Tandem-Solarzellen eingesetzt wurde. Neben den bereits im Handel erhältlichen SAM-Molekülen, welche in Einzel-Solarzellen bereits bessere Eigenschaften ermöglichten als das typischerweise benutzte Polymer PTAA (poly[bis(4-phenyl)(2,5,6trimentlyphenyl) amine]), haben wir ein neues SAM Molekül Me-4PACz ([4-(3,6-dimethyl-9H-carbazol-9-yl) butyl]phosphonic acid) für perowskitbasierte Einzel- und Tandem-Solarzellen vorgestellt. Zusätzlich zur gut passivierten Perowskit-Grenzfläche ermöglicht das neue Molekül eine schnelle Ladungsträgerextraktion, was zu einem erhöhten VOC und FF führt sowie einer verbesserten Photostabilität, obwohl der Perowskit einen erhöhten Bromanteil aufweist um eine Bandlücke von 1.68 eV zu erhalten. Normalerweise führt der erhöhte Anteil an Brom zur unerwünschten Phasentrennung der Halogenide. Die Vorteile der SAMs übertrugen sich auch in die Leistung der Tandem-Solarzellen. Zum einen zeigten Tandem-Solarzellen, welche SAMs als lochselektiven Kontakt nutzen, einen höherenWirkungsgrad als das überlicherweise genutzte Polymer PTAA. Zum anderen führte Me-4PACz zu sehr hohem VOC bis zu 1.92V und einem FF bis zu 81%. Zusammen mit dem durch die vorherige Optimierung hohen JSC, wurde ein von unabhängiger Seite zertifizierterWeltrekord-Wirkungsgrad von 29.15% erreicht. Um die Langzeitstabilität der Tandem-Solarzellen zu bewerten, haben wir eigens eine LED-basierte Lichtquelle entwickelt und hergestellt, welche eine präzise Kontrolle der JPh-Werte beider Teil-Solarzellen ermöglicht. Dadurch kann eine stabile Beleuchtung gewährleistet werden, welche das AM1.5g Spektrum imitiert. Die unverkapselten Zellen wurden für 300 Stunden an Luft und einer relativen Luftfeuchtigkeit von 30% bis 40% kontinuierlich beleuchtet und gemessen. Die Tandem-Solarzelle mit Me-4PACz zeigt dabei die höchste Stabilität und hatte nach diesen 300 Stunden immer noch 95.5% ihrer Anfangseffizienz. Wie aus der ersten Studie ersichtlich ist, ist es wünschenswert die Teil-Solarzellen genauestens zu analysieren. Durch die Serienverschaltung gestaltet sich das Analysieren der Teil-Solarzellen allerdings üblicherweise als schwierig. Um die Teil-Solarzellen dennoch evaluieren zu können, nutzten wir injektionsabhängige Elektrolumineszenz-Messungen, welche es ermöglichten die Strom-Spannungs-Kennlinie der Teil-Solarzellen ohne den Einfluss von Serienwiderständen zu rekonstruieren. Aus den rekonstruierten Kurven konnten wir die charakteristischen Merkmale wie den Punkt maximaler Leistung oder den Pseudo-Füllfaktor beider Teil-Solarzellen separat extrahieren. Weiterhin konnten wir die rekonstruierten Teil-Solarzellen parametrisieren und für elektrische Simulationen nutzen, welche zeigten, dass ein Wirkungsgrad von über 32% erreichbar ist wenn Verluste durch Serienwiderstände minimiert werden können. Die schnelle Verbesserung des Wirkungsgrades von Tandem-Solarzellen macht ebenfalls einen schnellen Technologietransfer in die Industrie notwendig. Alle hocheffizienten Perowskit/Silizium-Tandem-Solarzellen die bisher vorgestellt wurden basieren auf >250 μm dickem Silizium, welches aus dem Zonenschmelzverfahren (engl.: floatzone; FZ) gewonnen wird. Die meisten Silizium Teil-Solarzellen haben zusätzlich eine polierte Vorderseite. Für die Massenproduktion und somit aus wirtschaftlichen Gründen, ist es notwendig dünneres Silizium zu nutzen welches mittels Czochralski-Verfahren (CZ) hergestellt wird. Außerdem ist es wünschenswert auf die mechanische Politur der Vorderseite zu verzichten. Desshalb wurden in einer dritten Studie Tandem-Solarzellen, welche auf 100 μm dünnem CZ-Silizium mit rauer Oberfläche basieren, hergestellt und mit labortypischen Tandem-Solarzellen verglichen, begleitet von einem 1000-Stunden Langzeittest sowie optischen Simulationen. Wir konnten zeigen, dass beide Arten von Unterzellen zu Tandem-Solarzellen mit einem Wirkungsgrad von durchschnittlich ∼27.8% führten, wobei die höchsten Werte 27.89% für CZ- und 28.15% für FZ-basierte Zellen waren. Obwohl die Effizienz sehr ähnlich war, unterschieden sich die charakteristischen Parameter. Die dünnere Unterzelle führte aufgrund von geringeren Rekombinationsverlusten zu einem höheren VOC. Außerdem war das JPh geringer wenn das dünnere Silizium genutzt wurde, was zu einem größeren Stromunterschied der beiden Teil-Solarzellen führte. Wie aus der ersten Studie bekannt, erhöhte dieser Stromunterschied den FF der CZ-basierten Tandem-Solarzellen. Mittels optischer Simulationen fanden wir heraus, dass die Reduzierung der Silizium-Schichtdicke von 280 μm auf 100 μm eine Vergrößerung der Bandlücke um ∼0.02 eV ermöglicht, wenn ein Stromgleichgewicht bestehen bleiben soll. Interessanterweise ist diese Vergrößerung unabhängig von der Perowskit-Schichtdicke. Auf der einen Seite könnte durch die Vergrößerung der Bandlücke das VOC erhöht werden, was den Wirkungsgrad weiter steigert. Auf der anderen Seite sind Perowskite mit weiteren Bandlücken typischerweise instabiler und führen zur erhöhten unerwünschten Grenzflächenrekombination. Optische Simulationen mit beidseitig texturierten Tandem-Solarzellen wiesen genau dasselbe Ergebnis auf. Das Finden der optimalen Bandlücke für industrielle Perowskit/Silizium-Tandem-Solarzellen ist sehr wichtig für die weitere Entwicklung dieser faszinierenden Technologie. Diese Dissertation ist wichtig für den Fortschritt von Perowskit/Silizium-Tandem-Solarzellen und wird hoffentlich zum Ausbau von Photovoltaik beitragen.