Thumbnail Image

Multilayered lipid membrane stacks for biocatalysis using membrane enzymes

Heath, George R.; Li, Mengqiu; Rong, Honling; Radu, Valentin; Frielingsdorf, Stefan; Lenz, Oliver; Butt, Julea N.; Jeuken, Lars J. C.

FG Physikalische Chemie / Biophysikalische Chemie

Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single-lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly-l-lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo(3) from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane-bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in bio-catalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are inter-connected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.