Multilayered lipid membrane stacks for biocatalysis using membrane enzymes
dc.contributor.author | Heath, George R. | |
dc.contributor.author | Li, Mengqiu | |
dc.contributor.author | Rong, Honling | |
dc.contributor.author | Radu, Valentin | |
dc.contributor.author | Frielingsdorf, Stefan | |
dc.contributor.author | Lenz, Oliver | |
dc.contributor.author | Butt, Julea N. | |
dc.contributor.author | Jeuken, Lars J. C. | |
dc.date.accessioned | 2017-07-14T10:50:10Z | |
dc.date.available | 2017-07-14T10:50:10Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single-lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly-l-lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo(3) from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane-bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in bio-catalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are inter-connected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. | en |
dc.description.sponsorship | EC/FP7/280518/EU/Membrane-modified Electrodes to study Membrane Enzymes/MEME | en |
dc.description.sponsorship | DFG, EXC 314, Unifying Concepts in Catalysis | en |
dc.identifier.eissn | 1616-3028 | |
dc.identifier.issn | 1616-301X | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/6483 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-5991 | |
dc.language.iso | en | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten | de |
dc.subject.ddc | 530 Physik | de |
dc.subject.ddc | 540 Chemie und zugeordnete Wissenschaften | de |
dc.subject.other | biocatalysis | en |
dc.subject.other | biomimicry | en |
dc.subject.other | layer-by-layer assembly | en |
dc.subject.other | self-assembly | en |
dc.subject.other | solid supported membranes | en |
dc.title | Multilayered lipid membrane stacks for biocatalysis using membrane enzymes | en |
dc.type | Article | en |
dc.type.version | publishedVersion | en |
dcterms.bibliographicCitation.articlenumber | 1606265 | |
dcterms.bibliographicCitation.doi | 10.1002/adfm.201606265 | |
dcterms.bibliographicCitation.issue | 17 | |
dcterms.bibliographicCitation.journaltitle | Advanced Functional Materials | en |
dcterms.bibliographicCitation.originalpublishername | Wiley-VCH | en |
dcterms.bibliographicCitation.originalpublisherplace | Weinheim | en |
dcterms.bibliographicCitation.volume | 27 | |
tub.accessrights.dnb | free | |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Physikalische Chemie / Biophysikalische Chemie | de |
tub.affiliation.faculty | Fak. 2 Mathematik und Naturwissenschaften | de |
tub.affiliation.group | FG Physikalische Chemie / Biophysikalische Chemie | de |
tub.affiliation.institute | Inst. Chemie | de |
tub.publisher.universityorinstitution | Technische Universität Berlin |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- 10.1002.adfm.201606265.pdf
- Size:
- 3.23 MB
- Format:
- Adobe Portable Document Format
- Description: