Multilayered lipid membrane stacks for biocatalysis using membrane enzymes

dc.contributor.authorHeath, George R.
dc.contributor.authorLi, Mengqiu
dc.contributor.authorRong, Honling
dc.contributor.authorRadu, Valentin
dc.contributor.authorFrielingsdorf, Stefan
dc.contributor.authorLenz, Oliver
dc.contributor.authorButt, Julea N.
dc.contributor.authorJeuken, Lars J. C.
dc.date.accessioned2017-07-14T10:50:10Z
dc.date.available2017-07-14T10:50:10Z
dc.date.issued2017
dc.description.abstractMultilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single-lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly-l-lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo(3) from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane-bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in bio-catalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are inter-connected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.en
dc.description.sponsorshipEC/FP7/280518/EU/Membrane-modified Electrodes to study Membrane Enzymes/MEMEen
dc.description.sponsorshipDFG, EXC 314, Unifying Concepts in Catalysisen
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6483
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-5991
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.ddc530 Physikde
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherbiocatalysisen
dc.subject.otherbiomimicryen
dc.subject.otherlayer-by-layer assemblyen
dc.subject.otherself-assemblyen
dc.subject.othersolid supported membranesen
dc.titleMultilayered lipid membrane stacks for biocatalysis using membrane enzymesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber1606265
dcterms.bibliographicCitation.doi10.1002/adfm.201606265
dcterms.bibliographicCitation.issue17
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublishernameWiley-VCHen
dcterms.bibliographicCitation.originalpublisherplaceWeinheimen
dcterms.bibliographicCitation.volume27
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Physikalische Chemie / Biophysikalische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Physikalische Chemie / Biophysikalische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
10.1002.adfm.201606265.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format

Collections