Identification of discontinuous parameters in double phase obstacle problems

dc.contributor.authorZeng, Shengda
dc.contributor.authorBai, Yunru
dc.contributor.authorWinkert, Patrick
dc.contributor.authorYao, Jen-Chih
dc.date.accessioned2022-09-19T08:10:02Z
dc.date.available2022-09-19T08:10:02Z
dc.date.issued2022-08-19
dc.description.abstractIn this article, we investigate the inverse problem of identification of a discontinuous parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential operator, a multivalued convection term (a multivalued reaction term depending on the gradient), a multivalued boundary condition and an obstacle constraint. First, we apply a surjectivity theorem for multivalued mappings, which is formulated by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone mapping to examine the existence of a nontrivial solution to the double phase obstacle problem, which exactly relies on the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. Then, a nonlinear inverse problem driven by the double phase obstacle equation is considered. Finally, by introducing the parameter-to-solution-map, we establish a continuous result of Kuratowski type and prove the solvability of the inverse problem.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berlinen
dc.identifier.eissn2191-950X
dc.identifier.issn2191-9496
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17352
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-16133
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc510 Mathematikde
dc.subject.otherdiscontinuous parameteren
dc.subject.otherdouble phase operatoren
dc.subject.otherelliptic obstacle problemen
dc.subject.otherinverse problemen
dc.subject.othermixed boundary conditionen
dc.subject.othermultivalued convectionen
dc.subject.otherSteklov eigenvalue problemen
dc.titleIdentification of discontinuous parameters in double phase obstacle problemsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1515/anona-2022-0223en
dcterms.bibliographicCitation.issue1en
dcterms.bibliographicCitation.journaltitleAdvances in nonlinear analysisen
dcterms.bibliographicCitation.originalpublishernameDe Gruyteren
dcterms.bibliographicCitation.originalpublisherplaceBerlinen
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematik>FG Differentialgleichungende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Differentialgleichungende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Zeng_etal_Identification_2023.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Description:
Collections