In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

dc.contributor.authorDionigi, Fabio
dc.contributor.authorZeng, Zhenhua
dc.contributor.authorSinev, Ilya
dc.contributor.authorMerzdorf, Thomas
dc.contributor.authorDeshpande, Siddharth
dc.contributor.authorLopez, Miguel Bernal
dc.contributor.authorKunze, Sebastian
dc.contributor.authorZegkinoglou, Ioannis
dc.contributor.authorSarodnik, Hannes
dc.contributor.authorDingxin Fan, Dingxin Fan
dc.contributor.authorBermann, Arno
dc.contributor.authorDrnec, Jakub
dc.contributor.authorAraujo, Jorge Ferreira de
dc.contributor.authorGliech, Manuel
dc.contributor.authorTeschner, Detre
dc.contributor.authorZhu, Jing
dc.contributor.authorLi, Wei-Xue
dc.contributor.authorGreeley, Jeffrey
dc.contributor.authorCuenya, Beatriz Roldan
dc.contributor.authorStrasser, Peter
dc.date.accessioned2021-06-10T08:04:39Z
dc.date.available2021-06-10T08:04:39Z
dc.date.issued2020-05-20
dc.description.abstractNiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.description.sponsorshipEC/H2020/725915/EU/In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects/OPERANDOCATen
dc.description.sponsorshipDFG, 388390466, TRR 247: Heterogene Oxidationskatalyse in der Flüssigphase – Materialien und Mechanismen in der thermischen, Elektro- und Photokatalyseen
dc.description.sponsorshipBMWi, 03EIV041F, Verbundvorhaben: MethQuest - MethFuel - Innovative Methanerzeugung auf Basis Erneuerbarer Quellen; Teilvorhaben: Meerwasserelektrolyseen
dc.identifier.eissn2041-1723
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13233
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12028
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherdensity functional theoryen
dc.subject.otherelectrocatalysisen
dc.subject.otherenergyen
dc.titleIn-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolutionen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2522en
dcterms.bibliographicCitation.doi10.1038/s41467-020-16237-1en
dcterms.bibliographicCitation.journaltitleNature Communicationsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Dionigi_etal_In-situ_2020.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections