Thumbnail Image

Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition

Strempel, Verena E.; Löffler, Daniel; Kröhnert, Jutta; Skorupska, Katarzyna; Johnson, Benjamin; Naumann d’Alnoncourt, Raoul; Drieß, Matthias; Rosowski, Frank

Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V2O5 in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO)2P2O7 industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V5+ and is enriched in phosphorus under reaction conditions. On account of this, V2O5 with the oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V2O5 substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V2O5 by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.
Published in: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10.1116/1.4936390, American Institute of Physics (AIP)
  • This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Vac. Sci. Technol. A 34, 01A135 (2016) and may be found at https://doi.org/10.1116/1.4936390.