Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation

dc.contributor.authorMartínez-Ruiz, Erika Berenice
dc.contributor.authorCooper, Myriel
dc.contributor.authorBarrero-Canosa, Jimena
dc.contributor.authorHaryono, Mindia A. S.
dc.contributor.authorBessarab, Irina
dc.contributor.authorWilliams, Rohan B. H.
dc.contributor.authorSzewzyk, Ulrich
dc.date.accessioned2021-07-06T07:32:51Z
dc.date.available2021-07-06T07:32:51Z
dc.date.issued2021-06-22
dc.description.abstractBackground Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. Results Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. Conclusions The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021en
dc.identifier.eissn1471-2164
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13359
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12148
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.othermetabolic potentialen
dc.subject.othermanganese-oxidizing bacteriaen
dc.subject.otherbiotransformationen
dc.subject.othercyanotoxinsen
dc.titleGenome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformationen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber464en
dcterms.bibliographicCitation.doi10.1186/s12864-021-07766-0en
dcterms.bibliographicCitation.journaltitleBMC Genomicsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergen
dcterms.bibliographicCitation.volume22en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Technischen Umweltschutz::FG Umweltmikrobiologiede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Umweltmikrobiologiede
tub.affiliation.instituteInst. Technischen Umweltschutzde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Martinez-Ruiz_etal_Genome_2021.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections