PDE-constrained control using FEMLAB - Control of the Navier-Stokes equations

dc.contributor.authorSlawig, Thomas
dc.date.accessioned2021-12-17T10:06:22Z
dc.date.available2021-12-17T10:06:22Z
dc.date.issued2005-09-30
dc.description.abstractWe show how the software FEMLAB can be used to solve PDE-constrained optimal control problems. We give a general formulation for such kind of problems and derive the adjoint equation and optimality system. Then these preliminaries are specified for the stationary Navier-Stokes equations with distributed and boundary control. The main steps to define and solve a PDE with FEMLAB are described. We describe how the adjoint system can be implemented, and how the optimality system can be used by FEMLAB's built-in functions. Special crucial topics concerning efficiency are discussed. Examples with distributed and boundary control for different type of cost functionals in 2 and 3 space dimensions are presented.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15555
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14328
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otheroptimal controlen
dc.subject.otherfinite element methoden
dc.subject.otherNavier-Stokes equationsen
dc.subject.otherComsol Multiphysicsen
dc.subject.otherPDE-constrained controlen
dc.titlePDE-constrained control using FEMLAB - Control of the Navier-Stokes equationsen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2005, 26en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200049K20 Problems involving partial differential equationsen
tub.subject.msc200065K10 Optimization and variational techniquesen
tub.subject.msc200065N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methodsen
tub.subject.msc200035Q30 Stokes and Navier-Stokes equationsen
tub.subject.msc200076D05 Navier-Stokes equationsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ppr2005_26.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format

Collections