Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum

dc.contributor.authorYang, Hua
dc.contributor.authorAbali, B. Emek
dc.contributor.authorMüller, Wolfgang H.
dc.contributor.authorBarboura, Salma
dc.contributor.authorLi, Jia
dc.date.accessioned2022-02-18T09:36:26Z
dc.date.available2022-02-18T09:36:26Z
dc.date.issued2021-12-22
dc.description.abstractStrain gradient theory is an accurate model for capturing the size effect and localization phenomena. However, the challenge in identification of corresponding constitutive parameters limits the practical application of the theory. We present and utilize asymptotic homogenization herein. All parameters in rank four, five, and six tensors are determined with the demonstrated computational approach. Examples for epoxy carbon fiber composite, metal matrix composite, and aluminum foam illustrate the effectiveness and versatility of the proposed method. The influences of volume fraction of matrix, the stack of RVEs, and the varying unit cell lengths on the identified parameters are investigated. The homogenization computational tool is applicable to a wide class materials and makes use of open-source codes in FEniCS. We make all of the codes publicly available in order to encourage a transparent scientific exchange.en
dc.identifier.eissn1879-2146
dc.identifier.issn0020-7683
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16444
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15220
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-12553
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherstrain gradient elasticityen
dc.subject.otherasymptotic homogenization methoden
dc.subject.otherfinite element methoden
dc.subject.otherconstitutive parameters identificationen
dc.titleVerification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuumen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber111386en
dcterms.bibliographicCitation.doi10.1016/j.ijsolstr.2021.111386en
dcterms.bibliographicCitation.journaltitleInternational Journal of Solids and Structuresen
dcterms.bibliographicCitation.originalpublishernameElsevieren
dcterms.bibliographicCitation.originalpublisherplaceAmsterdamen
dcterms.bibliographicCitation.volume238en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Mechanik>FG Kontinuumsmechanik und Materialtheoriede
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Kontinuumsmechanik und Materialtheoriede
tub.affiliation.instituteInst. Mechanikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Yang_etal_Verification_2022.pdf
Size:
6.25 MB
Format:
Adobe Portable Document Format
Description:
Collections