Xenomicrobiology: a roadmap for genetic code engineering

dc.contributor.authorAcevedo-Rocha, Carlos G.
dc.contributor.authorBudisa, Nediljko
dc.date.accessioned2017-07-14T10:50:11Z
dc.date.available2017-07-14T10:50:11Z
dc.date.issued2016
dc.description.abstractBiology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing nonnatural building blocks in living cells. In this context, genetic code engineering respectively enables the redesign of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/ peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer.en
dc.identifier.eissn1751-7915
dc.identifier.issn1751-7907
dc.identifier.pmid27489097
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6490
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-5998
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.ddc610 Medizin und Gesundheitde
dc.subject.othernoncanonical amino-acidsen
dc.subject.otherescherichia coli cellsen
dc.subject.othertransfer RNAen
dc.subject.othermodified organismsen
dc.subject.othersynthetic biologyen
dc.subject.otherevolutionen
dc.subject.otherproteinsen
dc.subject.othertryptophanen
dc.subject.otherbacteriaen
dc.subject.otherbiosynthesisen
dc.titleXenomicrobiology: a roadmap for genetic code engineeringen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1111/1751-7915.12398
dcterms.bibliographicCitation.issue5
dcterms.bibliographicCitation.journaltitleMicrobial biotechnologyen
dcterms.bibliographicCitation.originalpublishernameWiley-Blackwellen
dcterms.bibliographicCitation.originalpublisherplaceOxforden
dcterms.bibliographicCitation.pageend676
dcterms.bibliographicCitation.pagestart666
dcterms.bibliographicCitation.volume9
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Biokatalysede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Biokatalysede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
10.1111.1751-7915.12398.pdf
Size:
610.02 KB
Format:
Adobe Portable Document Format

Collections