Balanced truncation model reduction for semidiscretized Stokes equation
dc.contributor.author | Stykel, Tatjana | |
dc.date.accessioned | 2021-12-17T10:05:46Z | |
dc.date.available | 2021-12-17T10:05:46Z | |
dc.date.issued | 2003-02-01 | |
dc.description.abstract | We discuss model reduction of linear continuous-time descriptor systems that arise in the control of semidiscretized Stokes equations. Balanced truncation model reduction methods for descriptor systems are presented. These methods are closely related to the proper and improper controllability and observability Gramians and Hankel singular values of descriptor systems. The Gramians can be computed by solving projected generalized Lyapunov equations. Important properties of the balanced truncation approach are that the asymptotic stability is preserved in the reduced order system and there is a priori bound on the approximation error. We demonstrate the application of balanced truncation model reduction to the semidiscretized Stokes equation. | en |
dc.identifier.issn | 2197-8085 | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/15512 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-14285 | |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 510 Mathematik | en |
dc.subject.other | matrix equations and identities | en |
dc.subject.other | dynamical systems in fluid mechanics, oceanography and meteorology | en |
dc.title | Balanced truncation model reduction for semidiscretized Stokes equation | en |
dc.type | Research Paper | en |
dc.type.version | submittedVersion | en |
tub.accessrights.dnb | free | en |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften::Inst. Mathematik | de |
tub.affiliation.faculty | Fak. 2 Mathematik und Naturwissenschaften | de |
tub.affiliation.institute | Inst. Mathematik | de |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
tub.series.issuenumber | 2003, 04 | en |
tub.series.name | Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin | en |
tub.subject.msc2000 | 15A24 Matrix equations and identities | en |
tub.subject.msc2000 | 37N10 Dynamical systems in fluid mechanics, oceanography and meteorology | en |
tub.subject.msc2000 | 93A15 Large scale systems | en |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- Preprint-04-2003.pdf
- Size:
- 238.62 KB
- Format:
- Adobe Portable Document Format
- Description: