Establishment of the basidiomycete Fomes fomentarius for the production of composite materials

dc.contributor.authorPohl, Carsten
dc.contributor.authorSchmidt, Bertram
dc.contributor.authorNunez Guitar, Tamara
dc.contributor.authorKlemm, Sophie
dc.contributor.authorGusovius, Hans-Jörg
dc.contributor.authorPlatzk, Stefan
dc.contributor.authorKruggel-Emden, Harald
dc.contributor.authorKlunker, Andre
dc.contributor.authorVöllmecke, Christina
dc.contributor.authorFleck, Claudia
dc.contributor.authorMeyer, Vera
dc.date.accessioned2022-05-25T13:39:57Z
dc.date.available2022-05-25T13:39:57Z
dc.date.issued2022-02-24
dc.description.abstractBackground: Filamentous fungi of the phylum Basidiomycota are considered as an attractive source for the biotechnological production of composite materials. The ability of many basidiomycetes to accept residual lignocellulosic plant biomass from agriculture and forestry such as straw, shives and sawdust as substrates and to bind and glue together these otherwise loose but reinforcing substrate particles into their mycelial network, makes them ideal candidates to produce biological composites to replace petroleum-based synthetic plastics and foams in the near future. Results: Here, we describe for the first time the application potential of the tinder fungus Fomes fomentarius for lab-scale production of mycelium composites. We used fine, medium and coarse particle fractions of hemp shives and rapeseed straw to produce a set of diverse composite materials and show that the mechanical materials properties are dependent on the nature and particle size of the substrates. Compression tests and scanning electron microscopy were used to characterize composite material properties and to model their compression behaviour by numerical simulations. Their properties were compared amongst each other and with the benchmark expanded polystyrene (EPS), a petroleum-based foam used for thermal isolation in the construction industry. Our analyses uncovered that EPS shows an elastic modulus of 2.37 ± 0.17 MPa which is 4-times higher compared to the F. fomentarius composite materials whereas the compressive strength of 0.09 ± 0.003 MPa is in the range of the fungal composite material. However, when comparing the ability to take up compressive forces at higher strain values, the fungal composites performed better than EPS. Hemp-shive based composites were able to resist a compressive force of 0.2 MPa at 50% compression, rapeseed composites 0.3 MPa but EPS only 0.15 MPa. Conclusion: The data obtained in this study suggest that F. fomentarius constitutes a promising cell factory for the future production of fungal composite materials with similar mechanical behaviour as synthetic foams such as EPS. Future work will focus on designing materials characteristics through optimizing substrate properties, cultivation conditions and by modulating growth and cell wall composition of F. fomentarius, i.e. factors that contribute on the meso- and microscale level to the composite behaviour.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2022en
dc.identifier.eissn2054-3085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16997
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15776
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.otherfilamentous fungien
dc.subject.otherFomes fomentariusen
dc.subject.othercircular economyen
dc.subject.otherbioeconomyen
dc.subject.othercomposite materialen
dc.subject.otherMyceliumen
dc.subject.otherNeo-Hooke modelen
dc.subject.otherfinite element methoden
dc.subject.othercompressive strengthen
dc.subject.otherstiffnessen
dc.titleEstablishment of the basidiomycete Fomes fomentarius for the production of composite materialsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber4en
dcterms.bibliographicCitation.doi10.1186/s40694-022-00133-yen
dcterms.bibliographicCitation.journaltitleFungal Biology and Biotechnologyen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergen
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Biotechnologie::FG Angewandte und Molekulare Mikrobiologiede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Angewandte und Molekulare Mikrobiologiede
tub.affiliation.instituteInst. Biotechnologiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Pohl_etal_Establishment_2022.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections