Edge Replication Strategies for Wide-Area Distributed Processing

dc.contributor.authorSemmler, Niklas
dc.contributor.authorRost, Matthias
dc.contributor.authorSmaragdakis, Georgios
dc.contributor.authorFeldmann, Anja
dc.date.accessioned2020-06-12T09:31:27Z
dc.date.available2020-06-12T09:31:27Z
dc.date.issued2020-04-27
dc.description.abstractThe rapid digitalization across industries comes with many challenges. One key problem is how the ever-growing and volatile data generated at distributed locations can be efficiently processed to inform decision making and improve products. Unfortunately, wide-area network capacity cannot cope with the growth of the data at the network edges. Thus, it is imperative to decide which data should be processed in-situ at the edge and which should be transferred and analyzed in data centers. In this paper, we study two families of proactive online data replication strategies, namely ski-rental and machine learning algorithms, to decide which data is processed at the edge, close to where it is generated, and which is transferred to a data center. Our analysis using real query traces from a Global 2000 company shows that such online replication strategies can significantly reduce data transfer volume in many cases up to 50% compared to naive approaches and achieve close to optimal performance. After analyzing their shortcomings for ease of use and performance, we propose a hybrid strategy that combines the advantages of both competitive and machine learning algorithms.en
dc.description.sponsorshipEC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNeten
dc.description.sponsorshipBMBF, 01IS18025A, Verbundprojekt BIFOLD-BBDC: Berlin Institute for the Foundations of Learning and Dataen
dc.description.sponsorshipBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and Dataen
dc.identifier.isbn978-1-4503-7132-2
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11323
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10208
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc006 Spezielle Computerverfahrende
dc.subject.otherdata replicationen
dc.subject.otherdistributed systemsen
dc.subject.otheredge computingen
dc.titleEdge Replication Strategies for Wide-Area Distributed Processingen
dc.typeConference Objecten
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1145/3378679.3394532en
dcterms.bibliographicCitation.originalpublishernameAssociation for Computing Machinery (ACM)en
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.proceedingstitleProceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking (EdgeSys '20)en
tub.accessrights.dnbfreeen
tub.affiliationFak. 4 Elektrotechnik und Informatik::Inst. Telekommunikationssysteme::FG Internet Measurement and Analysis (IMA)de
tub.affiliation.facultyFak. 4 Elektrotechnik und Informatikde
tub.affiliation.groupFG Internet Measurement and Analysis (IMA)de
tub.affiliation.instituteInst. Telekommunikationssystemede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
semmler_etal_2020.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
5.75 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections