Impact of Carbon Support Meso‐Porosity on Mass Transport and Performance of PEMFC Cathode Catalyst Layers

dc.contributor.authorOtt, Sebastian
dc.contributor.authorBauer, Andreas
dc.contributor.authorDu, Fengmin
dc.contributor.authorDao, Tuan Anh
dc.contributor.authorKlingenhof, Malte
dc.contributor.authorOrfanidi, Alin
dc.contributor.authorStrasser, Peter
dc.date.accessioned2022-03-31T06:36:32Z
dc.date.available2022-03-31T06:36:32Z
dc.date.issued2021-09-27
dc.date.updated2022-03-21T00:23:13Z
dc.description.abstractThe analysis of the impact of the cathode catalyst layer pore structure on the membrane electrode assembly (MEA) cell performance of a PEMFC is presented. In this study, a pristine CMK‐3 catalyst carbon support material with well‐defined pore structure in the 3–6 nm range together with two nitrogen‐doped variants is analyzed against a commercial carbon black to achieve a better understanding of catalyst layer porosity‐performance relations. We used chemically N‐doped CMK‐3 catalyst to learn more about the effect of N‐doped porous catalyst supports on the concomitant transport properties and PEMFC cell performance. Chemical treatment using cyanamide was conducted to introduce a variety of N‐functionalities. A detailed in‐situ electrochemical investigation was combined with N2‐physisorption analysis. Based on their structural properties, the mesopore fractions and pore openings display a major role for reducing oxygen transport resistance and enhance Pt accessibility. We find that hierarchically ordered mesoporosity is superior to disordered porosity with prevalent micropore character: Analysis including adsorption electrochemical active surface area (ECSA), Pt‐accessibility, ionomer coverage, pore geometry, proton resistivity and transport loss we conclude the importance of a well‐defined mesoporous structure for its cell performance.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021
dc.identifier.eissn1867-3899
dc.identifier.issn1867-3880
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16615
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15392
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-16022en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheroxygen reduction reactionen
dc.subject.otherfuel cellen
dc.subject.othermass transporten
dc.subject.otherporosityen
dc.subject.othercatalyst layeren
dc.titleImpact of Carbon Support Meso‐Porosity on Mass Transport and Performance of PEMFC Cathode Catalyst Layersen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/cctc.202101162en
dcterms.bibliographicCitation.issue22en
dcterms.bibliographicCitation.journaltitleChemCatChemen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend4769en
dcterms.bibliographicCitation.pagestart4759en
dcterms.bibliographicCitation.volume13en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
CCTC_CCTC202101162.pdf
Size:
5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections