Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives

dc.contributor.authorBremer, Lucas
dc.contributor.authorWeber, Ksenia
dc.contributor.authorFischbach, Sarah
dc.contributor.authorThiele, Simon
dc.contributor.authorSchmidt, Marco
dc.contributor.authorKaganskiy, Arsenty
dc.contributor.authorRodt, Sven
dc.contributor.authorHerkommer, Alois
dc.contributor.authorSartison, Marc
dc.contributor.authorPortalupi, Simone Luca
dc.contributor.authorMichler, Peter
dc.contributor.authorGiessen, Harald
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2020-11-06T09:19:08Z
dc.date.available2020-11-06T09:19:08Z
dc.date.issued2020-10-01
dc.description.abstractUser-friendly single-photon sources with high photon-extraction efficiency are crucial building blocks for photonic quantum applications. For many of these applications, such as long-distance quantum key distribution, the use of single-mode optical fibers is mandatory, which leads to stringent requirements regarding the device design and fabrication. We report on the on-chip integration of a quantum dot (QD) microlens with a 3D-printed micro-objective in combination with a single-mode on-chip fiber coupler. The practical quantum device is realized by the deterministic fabrication of the QD-microlens via in situ electron-beam lithography and the 3D two-photon laser writing of the on-chip micro-objective and fiber chuck. A QD with a microlens is an efficient single-photon source, whose emission is collimated by the on-chip micro-objective. A second polymer microlens is located at the end facet of the single-mode fiber and ensures that the collimated light is efficiently coupled into the fiber core. For this purpose, the fiber is placed in an on-chip fiber chuck, which is precisely aligned to the QD-microlens thanks to the sub-micrometer processing accuracy of high-resolution two-photon direct laser writing. The resulting quantum device has a broadband photon extraction efficiency, a single-mode fiber-coupling efficiency of 22%, a measured single-photon flux of 42 kHz (8.9 kHz) under cw (pulsed) optical excitation, which corresponds to 1.5 MHz (0.3 MHz) at the single-mode fiber output, and a multi-photon probability in terms of g(2)(0) = 0.00±0.04/0.00 (0.13 ± 0.05) under cw (pulsed) optical excitation. The stable design of the developed fiber-coupled quantum device makes it highly attractive for integration into user-friendly plug-and-play quantum applications.en
dc.description.sponsorshipBMBF, 16KIS0862, Verbundprojekt: Q.Link.Extension - Q.Link.X -; Teilvorhaben: Komponenten und Aufbau einer Demonstratorstrecke zur speicher-assistierten Quantenschlüsselübertragungen
dc.description.sponsorshipDFG, 255652081, SPP 1839: Tailored Disorder - A science- and engineering-based approach to materials design for advanced photonic applicationsen
dc.description.sponsorshipDFG, 273920612, SPP 1929: Giant Interactions in Rydberg Systems (GiRyd)en
dc.identifier.eissn2378-0967
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11848
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10738
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otheroptical fibersen
dc.subject.otherquantum dotsen
dc.subject.otherelectron-beam lithographyen
dc.subject.otherphotoemissionen
dc.subject.otherquantum informationen
dc.subject.other3D printingen
dc.subject.othermicroopticsen
dc.subject.otherquasiparticleen
dc.subject.othermultiphoton lithographyen
dc.subject.otheroptical propertiesen
dc.titleQuantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectivesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber106101en
dcterms.bibliographicCitation.doi10.1063/5.0014921en
dcterms.bibliographicCitation.issue10en
dcterms.bibliographicCitation.journaltitleAPL Photonicsen
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physicsen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume5en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Festkörperphysik>AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Bremer_etal_2020.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
Description:
Collections