On optimal control problems with convex control constraints

dc.contributor.authorWachsmuth, Daniel
dc.date.accessioned2021-12-17T10:06:16Z
dc.date.available2021-12-17T10:06:16Z
dc.date.issued2005-12-30
dc.description.abstractWe investigate optimal control problems with vector-valued controls. As model problem serve the optimal distributed control of the instationary Navier-Stokes equations. We study pointwise convex control constraints, which is a constraint of the form u(x,t)?U(x,t) that has to hold on the domain Q. Here, U is an set-valued mapping that is assumed to be measurable with convex and closed images. We establish first-order necessary as well as second-order sufficient optimality conditions. And we prove regularity results for locally optimal controls.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15548
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14321
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otheroptimal controlen
dc.subject.otherconvex control constraintsen
dc.subject.otherset-valued mappingsen
dc.subject.otheractive-set strategyen
dc.subject.otherNavier-Stokes equationsen
dc.titleOn optimal control problems with convex control constraintsen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2005, 35en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200049M05 Methods based on necessary conditionsen
tub.subject.msc200026E25 Set-valued functionsen
tub.subject.msc200049K20 Problems involving partial differential equationsen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ppr2005_35.pdf
Size:
184.27 KB
Format:
Adobe Portable Document Format
Description:
Collections