Droplet coalescence by molecular dynamics and phase-field modeling

dc.contributor.authorHeinen, Matthias
dc.contributor.authorHoffmann, Marco
dc.contributor.authorDiewald, Felix
dc.contributor.authorSeckler, Steffen
dc.contributor.authorLangenbach, Kai
dc.contributor.authorVrabec, Jadran
dc.date.accessioned2022-05-23T11:09:18Z
dc.date.available2022-05-23T11:09:18Z
dc.date.issued2022-04-04
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Heinen, M., Hoffmann, M., Diewald, F., Seckler, S., Langenbach, K., & Vrabec, J. (2022). Droplet coalescence by molecular dynamics and phase-field modeling. In Physics of Fluids (Vol. 34, Issue 4, p. 042006). AIP Publishing, and may be found at https://doi.org/10.1063/5.0086131.en
dc.description.abstractCoalescence of argon droplets with a radius of 25, 50, and 100 nm is studied with computational methods. Molecular dynamics (MD) simulations are carried out to generate reference data. Moreover, a phase-field model resting on a Helmholtz energy equation of state is devised and evaluated by computational fluid dynamics (CFD) simulations. Exactly the same scenarios in terms of geometry, fluid, and state are considered with these approaches. The MD and CFD simulation results show an excellent agreement over the entire coalescence process, including the decay of the inertia-induced oscillation of the merged droplet. Theoretical knowledge about the asymptotic behavior of coalescence process regimes is confirmed. All considered scenarios cross from the inertially limited viscous regime over to the inertial regime because of the low shear viscosity of argon. The particularly rapid dynamics during the initial stages of the coalescence process in the thermal regime is also captured by the phase-field model, where a closer look at the liquid density reveals that metastable states associated with negative pressure are attained in the emerging liquid bridge between the coalescing droplets. This demonstrates that this model is even capable of adequately handling the onset of coalescence. To speed up CFD simulations, the phase-field model is transferred to coarser grids through an interface widening approach that retains the thermodynamic properties including the surface tension.en
dc.description.sponsorshipDFG, 84292822, TRR 75: Tropfendynamische Prozesse unter extremen Umgebungsbedingungenen
dc.description.sponsorshipDFG, 172116086, SFB 926: Bauteiloberflächen: Morphologie auf der Mikroskalaen
dc.identifier.eissn1089-7666
dc.identifier.issn0031-9171
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16980
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15759
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherthermodynamic functionsen
dc.subject.othermolecular dynamicsen
dc.subject.otherthermodynamic propertiesen
dc.subject.othercomputational fluid dynamicsen
dc.subject.otherviscosityen
dc.subject.othercomputational methodsen
dc.subject.othercryosphereen
dc.subject.othermathematical modelingen
dc.subject.otherdrop coalescenceen
dc.subject.otherequations of stateen
dc.titleDroplet coalescence by molecular dynamics and phase-field modelingen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber042006en
dcterms.bibliographicCitation.doi10.1063/5.0086131en
dcterms.bibliographicCitation.issue4en
dcterms.bibliographicCitation.journaltitlePhysics of Fluidsen
dcterms.bibliographicCitation.originalpublishernameAIPen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume34en
tub.accessrights.dnbdomain*
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Thermodynamik und Thermische Verfahrenstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Thermodynamik und Thermische Verfahrenstechnikde
tub.affiliation.instituteInst. Prozess- und Verfahrenstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Heinen_etal_Droplet_2022.pdf
Size:
4.31 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections