Microhydration of PAH+ cations: evolution of hydration network in naphthalene+-(H2O)n clusters (n ≤ 5)

dc.contributor.authorChatterjee, Kuntal
dc.contributor.authorDopfer, Otto
dc.date.accessioned2021-04-07T11:37:32Z
dc.date.available2021-04-07T11:37:32Z
dc.date.issued2018-01-24
dc.description.abstractThe interaction of polycyclic aromatic hydrocarbon molecules with water (H2O = W) is of fundamental importance in chemistry and biology. Herein, size-selected microhydrated naphthalene cation nanoclusters, Np+-Wn (n ≤ 5), are characterized by infrared photodissociation (IRPD) spectroscopy in the C–H and O–H stretch range to follow the stepwise evolution of the hydration network around this prototypical PAH+ cation. The IRPD spectra are highly sensitive to the hydration structure and are analyzed by dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ) to determine the predominant structural isomers. For n = 1, W forms a bifurcated CH⋯O ionic hydrogen bond (H-bond) to two acidic CH protons of the bicyclic ring. For n ≥ 2, the formation of H-bonded solvent networks dominates over interior ion solvation, because of strong cooperativity in the former case. For n ≥ 3, cyclic Wn solvent structures are attached to the CH protons of Np+. However, while for n = 3 the W3 ring binds in the CH⋯O plane to Np+, for n ≥ 4 the cyclic Wn clusters are additionally stabilized by stacking interactions, leading to sandwich-type configurations. No intracluster proton transfer from Np+ to the Wn solvent is observed in the studied size range (n ≤ 5), because of the high proton affinity of the naphthyl radical compared to Wn. This is different from microhydrated benzene+ clusters, (Bz-Wn)+, for which proton transfer is energetically favorable for n ≥ 4 due to the much lower proton affinity of the phenyl radical. Hence, because of the presence of polycyclic rings, the interaction of PAH+ cations with W is qualitatively different from that of monocyclic Bz+ with respect to interaction strength, structure of the hydration shell, and chemical reactivity. These differences are rationalized and quantified by quantum chemical analysis using the natural bond orbital (NBO) and noncovalent interaction (NCI) approaches.en
dc.identifier.eissn2041-6539
dc.identifier.issn2041-6520
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12949
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11744
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-10571
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en
dc.subject.ddc535 Licht, Infrarot- und Ultraviolettphänomenede
dc.subject.othermicrohydrationen
dc.subject.otherpolycyclic aromatic hydrocarbon moleculesen
dc.subject.otherhydration networken
dc.titleMicrohydration of PAH+ cations: evolution of hydration network in naphthalene+-(H2O)n clusters (n ≤ 5)en
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/C7SC05124Gen
dcterms.bibliographicCitation.issue8en
dcterms.bibliographicCitation.journaltitleChemical Scienceen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryen
dcterms.bibliographicCitation.originalpublisherplaceCambridgeen
dcterms.bibliographicCitation.pageend2318en
dcterms.bibliographicCitation.pagestart2301en
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Optik und Atomare Physik>FG Lasermolekülspektroskopie und Umweltphysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Lasermolekülspektroskopie und Umweltphysikde
tub.affiliation.instituteInst. Optik und Atomare Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Chatterjee_Dopfer_Microhydration_2018.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:
Collections