Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence

dc.contributor.authorVulova, Stenka
dc.contributor.authorMeier, Fred
dc.contributor.authorRocha, Alby Duarte
dc.contributor.authorQuanz, Justus
dc.contributor.authorNouri, Hamideh
dc.contributor.authorKleinschmit, Birgit
dc.date.accessioned2022-12-01T11:13:06Z
dc.date.available2022-12-01T11:13:06Z
dc.date.issued2021-04-28
dc.description.abstractAs climate change progresses, urban areas are increasingly affected by water scarcity and the urban heat island effect. Evapotranspiration (ET) is a crucial component of urban greening initiatives of cities worldwide aimed at mitigating these issues. However, ET estimation methods in urban areas have so far been limited. An expanding number of flux towers in urban environments provide the opportunity to directly measure ET by the eddy covariance method. In this study, we present a novel approach to model urban ET by combining flux footprint modeling, remote sensing and geographic information system (GIS) data, and deep learning and machine learning techniques. This approach facilitates spatio-temporal extrapolation of ET at a half-hourly resolution; we tested this approach with a two-year dataset from two flux towers in Berlin, Germany. The benefit of integrating remote sensing and GIS data into models was investigated by testing four predictor scenarios. Two algorithms (1D convolutional neural networks (CNNs) and random forest (RF)) were compared. The best-performing models were then used to model ET values for the year 2019. The inclusion of GIS data extracted using flux footprints enhanced the predictive accuracy of models, particularly when meteorological data was more limited. The best-performing scenario (meteorological and GIS data) showed an RMSE of 0.0239 mm/h and R2 of 0.840 with RF and an RMSE of 0.0250 mm/h and a R2 of 0.824 with 1D CNN for the more vegetated site. The 2019 ET sum was substantially higher at the site surrounded by more urban greenery (366 mm) than at the inner-city site (223 mm), demonstrating the substantial influence of vegetation on the urban water cycle. The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can support climate change mitigation initiatives of urban areas worldwide.en
dc.description.sponsorshipDFG, 248198858, GRK 2032: Grenzzonen in urbanen Wassersystemen
dc.description.sponsorshipDFG, 197674476, FOR 1736: Stadtklima und Hitzestress in Städten der Mittelbreiten in Anbetracht des Klimawandels (UCaHS)
dc.description.sponsorshipBMBF, 01LP1602A, Verbundprojekt Stadtklima: Evaluierung von Stadtklimamodellen (Modul B), 3DO Teilprojekt 1: Dreidimensionales Monitoring atmosphärischer Prozesse in Berlin
dc.identifier.eissn1879-1026
dc.identifier.issn0048-9697
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17771
dc.identifier.urihttps://doi.org/10.14279/depositonce-16558
dc.language.isoen
dc.relation.ispartof10.14279/depositonce-16474
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550 Geowissenschaftende
dc.subject.ddc621 Angewandte Physikde
dc.subject.otherurban wateren
dc.subject.otherEddy covarianceen
dc.subject.otherlatent heat fluxen
dc.subject.other1D convolutional neural networksen
dc.subject.otherCNNen
dc.subject.otherdeep learningen
dc.subject.otherHarmonized Landsat and Sentinel-2en
dc.titleModeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligenceen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber147293
dcterms.bibliographicCitation.doi10.1016/j.scitotenv.2021.147293
dcterms.bibliographicCitation.journaltitleThe science of the total environment
dcterms.bibliographicCitation.originalpublishernameElsevier
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam
dcterms.bibliographicCitation.volume786
tub.accessrights.dnbfree
tub.affiliationFak. 6 Planen Bauen Umwelt::Inst. Landschaftsarchitektur und Umweltplanung::FG Geoinformation in der Umweltplanung
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Vulova_etal_Modeling_2021.pdf
Size:
4.9 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections