Loading…
Thumbnail Image

Real-time inference of word relevance from electroencephalogram and eye gaze

Wenzel, Markus A.; Bogojeski, Mihail; Blankertz, Benjamin

Objective. Brain-computer interfaces can potentially map the subjective relevance of the visual surroundings, based on neural activity and eye movements, in order to infer the interest of a person in real-time. Approach. Readers looked for words belonging to one out of five semantic categories, while a stream of words passed at different locations on the screen. It was estimated in real-time which words and thus which semantic category interested each reader based on the electroencephalogram (EEG) and the eye gaze. Main results. Words that were subjectively relevant could be decoded online from the signals. The estimation resulted in an average rank of 1.62 for the category of interest among the five categories after a hundred words had been read. Significance. It was demonstrated that the interest of a reader can be inferred online from EEG and eye tracking signals, which can potentially be used in novel types of adaptive software, which enrich the interaction by adding implicit information about the interest of the user to the explicit interaction. The study is characterised by the following novelties. Interpretation with respect to the word meaning was necessary in contrast to the usual practice in brain-computer interfacing where stimulus recognition is sufficient. The typical counting task was avoided because it would not be sensible for implicit relevance detection. Several words were displayed at the same time, in contrast to the typical sequences of single stimuli. Neural activity was related with eye tracking to the words, which were scanned without restrictions on the eye movements.
Published in: Journal of Neural Engineering, 10.1088/1741-2552/aa7590, IOP Publishing