Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source

dc.contributor.authorKreinberg, Sören
dc.contributor.authorGrbešić, Tomislav
dc.contributor.authorStrauß, Max
dc.contributor.authorCarmele, Alexander
dc.contributor.authorEmmerling, Monika
dc.contributor.authorSchneider, Christian
dc.contributor.authorHöfling, Sven
dc.contributor.authorPorte, Xavier
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2020-05-04T08:27:18Z
dc.date.available2020-05-04T08:27:18Z
dc.date.issued2018-07-25
dc.description.abstractTwo-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems. Here we address this issue and present a concept for a compact resonantly driven single-photon source by performing quantum-optical spectroscopy of a two-level system using a compact high-β microlaser as the excitation source. The two-level system is based on a semiconductor quantum dot (QD), which is excited resonantly by a fiber-coupled electrically driven micropillar laser. We dress the excitonic state of the QD under continuous wave excitation, and trigger the emission of single photons with strong multi-photon suppression (g(2)(0)=0.02) and high photon indistinguishability (V = 57±9%) via pulsed resonant excitation at 156 MHz. These results clearly demonstrate the high potential of our resonant excitation scheme, which can pave the way for compact electrically driven quantum light sources with excellent quantum properties to enable the implementation of advanced quantum communication protocols.en
dc.description.sponsorshipEC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISITEen
dc.description.sponsorshipDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelementeen
dc.identifier.eissn2047-7538
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11073
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9961
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherphotonic quantum technologyen
dc.subject.othertwo-level systemen
dc.subject.otherquantum-optical spectroscopyen
dc.subject.othermicropillar laseren
dc.subject.otherquantum doten
dc.subject.othersemiconductor lasersen
dc.titleQuantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation sourceen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber41en
dcterms.bibliographicCitation.doi10.1038/s41377-018-0045-6en
dcterms.bibliographicCitation.journaltitleLight: Science & Applicationsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.volume7en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Festkörperphysik>AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
reitzenstein_etal_2018.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Collections