Modulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced Metal–Sulfur Batteries

dc.contributor.authorZhu, Ran
dc.contributor.authorZheng, Weiqiong
dc.contributor.authorYan, Rui
dc.contributor.authorWu, Min
dc.contributor.authorZhou, Hongju
dc.contributor.authorHe, Chao
dc.contributor.authorLiu, Xikui
dc.contributor.authorCheng, Chong
dc.contributor.authorLi, Shuang
dc.contributor.authorZhao, Changsheng
dc.date.accessioned2022-12-15T14:43:39Z
dc.date.available2022-12-15T14:43:39Z
dc.date.issued2022-08-16
dc.date.updated2022-11-22T16:21:23Z
dc.description.abstractAdvanced metal–sulfur batteries (MSBs) are regarded as promising next‐generation energy storage devices. Recently, engineering polysulfide redox catalysts (PSRCs) to stabilize and catalytically convert polysulfide intermediates is proposed as an effective strategy to address the grand challenge of “shuttle effects” in the cathode. Therefore, modulating the bond interactions and interface microenvironments and disclosing the structure–performance correlations between polysulfide and catalysts are essential to guide the future cathode design in MSBs. Herein, from a multidisciplinary view, the most recent process in the reaction principles, in situ characterizations, bond interaction modulation, and interface microenvironment optimization of polysulfide redox catalysts, is comprehensively summarized. Especially, unique insights are provided into the strategies for tailoring the bond interactions of PSRCs, such as heteroatom doping, vacancy engineering, heterostructure, coordination structure arrangements, and crystal phase modulation. Furthermore, the importance of interface microenvironments and substrate effects in different PSRCs are exposed, and a detailed comparison is given to unveil the critical parameters for their future developments. Finally, the critical design principles on electrode microenvironments for advanced MSBs are also proposed to stimulate the practically widespread utilization of PSRCs‐equipped cathodes in MSBs. Overall, this review provides cutting‐edge guidance for future developments in high‐energy‐density and long‐life MSBs.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2022
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17823
dc.identifier.urihttps://doi.org/10.14279/depositonce-16612
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othercatalytic materials
dc.subject.otherelectrodes
dc.subject.otherelectrocatalysts
dc.subject.othermetal–sulfur batteries
dc.subject.otherpolysulfide redox catalyses
dc.subject.othershuttle effects
dc.titleModulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced Metal–Sulfur Batteriesen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber2207021
dcterms.bibliographicCitation.doi10.1002/adfm.202207021
dcterms.bibliographicCitation.issue45
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.volume32
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Funktionsmaterialien
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADFM_ADFM202207021.pdf
Size:
17.38 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections