Model-Based Analysis of Different Equivalent Consumption Minimization Strategies for a Plug-In Hybrid Electric Vehicle

dc.contributor.authorGeng, Stefan
dc.contributor.authorSchulte, Thomas
dc.contributor.authorMaas, Jürgen
dc.date.accessioned2022-04-14T09:33:51Z
dc.date.available2022-04-14T09:33:51Z
dc.date.issued2022-03-11
dc.date.updated2022-04-08T07:33:16Z
dc.description.abstractPlug-in hybrid electric vehicles (PHEVs) are developed to reduce fuel consumption and the emission of carbon dioxide. Common powertrain configurations of PHEVs (i.e., the configuration of the combustion engine, electric motor, and transmission) can be operated either in series, parallel, or power split hybrid mode, whereas powertrain configurations with multimode transmissions enable switching between those modes during vehicle operation. Hence, depending on the current operation state of the vehicle, the most appropriate mode in terms efficiency can be selected. This, however, requires an operating strategy, which controls the mode selection as well as the torque distribution between the combustion engine and electric motor with the aim of optimal battery depletion and minimal fuel consumption. A well-known approach is the equivalent consumption minimization strategy (ECMS). It can be applied by using optimizations based on a prediction of the future driving behavior. Since the outcome of the ECMS depends on the quality of this prediction, it is crucial to know how accurate the predictions must be in order to obtain acceptable results. In this contribution, various prediction methods and real-time capable ECMS implementations are analyzed and compared in terms of the achievable fuel economy. The basis for the analysis is a holistic model of a state-of-the-art PHEV powertrain configuration, comprising the multimode transmission, corresponding powertrain components, and representative real-world driving data.en
dc.description.sponsorshipBMWi, 01MY13004B, Verbundprojekt: PHEVplus - Effizienzgesteigertes Plug-in-Hybridsystem durch innovative MRF-Kupplungstechnologie; Teilvorhaben: HS OWLen
dc.identifier.eissn2076-3417
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16732
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15510
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.otherPHEVen
dc.subject.otherECMSen
dc.subject.othermultimode transmissionen
dc.subject.otheroptimizationen
dc.subject.otherpowertrain modelingen
dc.titleModel-Based Analysis of Different Equivalent Consumption Minimization Strategies for a Plug-In Hybrid Electric Vehicleen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2905en
dcterms.bibliographicCitation.doi10.3390/app12062905en
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleApplied Sciencesen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Maschinenkonstruktion und Systemtechnik::FG Elektromechanische Konstruktionende
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Elektromechanische Konstruktionende
tub.affiliation.instituteInst. Maschinenkonstruktion und Systemtechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
applsci-12-02905-v2.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections