Thumbnail Image

Dynamic Routing of Automated Guided Vehicles in Real-time

Gawrilow, Ewgenij; Köhler, Ekkehard; Möhring, Rolf H.; Stenzel, Björn

Inst. Mathematik

Automated Guided Vehicles (AGVs) are state-of-the-art technology for optimizing large scale production systems and are used in a wide range of application areas. A standard task in this context is to find efficient routing schemes, i.e., algorithms that route these vehicles through the particular environment. The productivity of the AGVs is highly dependent on the used routing scheme. In this work we study a particular routing algorithm for AGVs in an automated logistic system. For the evaluation of our algorithm we focus on Container Terminal Altenwerder~(CTA) at Hamburg Harbor. However, our model is appropriate for an arbitrary graph. The key feature of this algorithm is that it avoids collisions, deadlocks and livelocks already at the time of route computation (conflict-free routing), whereas standard approaches deal with these problems only at the execution time of the routes. In addition, the algorithm considers physical properties of the AGVs and certain safety aspects implied by the particular application.