Versatile control over size and spacing of small mesopores in metal oxide films and catalytic coatings via templating with hyperbranched core-multishell polymers

dc.contributor.authorBernsmeier, Denis
dc.contributor.authorOrtel, Erik
dc.contributor.authorPolte, Jörg
dc.contributor.authorEckhardt, Björn
dc.contributor.authorNowag, Sabrina
dc.contributor.authorHaag, Rainer
dc.contributor.authorKrähnert, Ralph
dc.date.accessioned2016-06-21T08:29:17Z
dc.date.available2016-06-21T08:29:17Z
dc.date.issued2014
dc.description.abstractControlling the pore structure of metal oxide films and supported catalysts is an essential requirement for tuning their functionality and long-term stability. Typical synthesis concepts such as “Evaporation Induced Self Assembly” rely on micelle formation and self assembly. These processes are dynamic in nature and therefore strongly influenced by even slight variations in the synthesis conditions. Moreover, the synthesis of very small mesopores (2–5 nm) and independent control over the thickness of pore walls are very difficult to realize with micelle-based approaches. In this contribution, we present a novel approach for the synthesis of mesoporous metal oxide films and catalytic coatings with ordered porosity that decouples template formation and film deposition by use of hyperbranched core–multishell polymers as templates. The approach enables independent control of pore size, wall thickness and the content of catalytically active metal particles. Moreover, dual templating with a combination of hyperbranched core–multishell polymers and micelles provides facile access to hierarchical bimodal porosity. The developed approach is illustrated by synthesizing one of the most common metal oxides (TiO2) and a typical supported catalyst (PdNP/TiO2). Superior catalyst performance is shown for the gas-phase hydrogenation of butadiene. The concept provides a versatile and general platform for the rational optimization of catalysts based e.g. on computational prediction of optimal pore structures and catalyst compositions.en
dc.description.sponsorshipBMBF, 03EK3009, Design hocheffizienter Elektrolysekatalysatorenen
dc.identifier.eissn2050-7496
dc.identifier.issn2050-7488
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/5564
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-5193
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.ddc530 Physikde
dc.titleVersatile control over size and spacing of small mesopores in metal oxide films and catalytic coatings via templating with hyperbranched core-multishell polymersen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c4ta01842g
dcterms.bibliographicCitation.issue32
dcterms.bibliographicCitation.journaltitleJournal of materials chemistry : A, Materials for energy and sustainabilityen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryde
dcterms.bibliographicCitation.originalpublisherplaceCambridgede
dcterms.bibliographicCitation.pageend13082
dcterms.bibliographicCitation.pagestart13075
dcterms.bibliographicCitation.volume2
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c4ta01842g.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format

Collections